导航:首页 > 数据处理 > 大数据时代可以做哪些措施

大数据时代可以做哪些措施

发布时间:2023-05-07 02:07:59

大数据时代,我们怎么做才能保护隐私呢

在APP算法中保护隐私和权益,个人可以采取以下措施:

1. 尽量少授权。不同的APP需要不同的权限才能运行,但许多APP申请的权限过于广泛信姿,这可能泄露你的隐私。所以在使用APP前,要审慎查看其权限申请,尽量选择权限申请较少的APP。

2. 定期审查权限。许多APP会通过更新来增加权限申请,这也容易导致隐私泄露。所以要定期检查你所使用APP的权限,对不必要的权限申请进行撤销。这可以避免APP通过更新擅自获取更多信息。

3. 备份数据并清除账号。一些APP会收集你存储在其上的各种信息,如果不再使用该APP,最好能够先将其上的数据进行备份,然后清除相关账号。这可以最大限度地删除该公司对你信息的掌控。

4. 选择值得信赖的品牌。在选择APP时,优先考虑那些信誉良好、隐私政策明确的知名品牌。知名品牌由于考虑品牌影响,一般会局谈更加注重用户隐私保护,这可以降低信息泄露的风险。

5. 查阅隐私政策。每个APP都会制定相关的隐私政策,用户使用前应该认真查阅,了解该APP会如何收集和使用你的个人信息。如果其隐私政策过于敷衍或获取信息范围过广,则不建议使用。

6. 提高安全意识。用户要增强对算法和人工智能的认知,了解信息是如何被收集、分析和利用的。在理解面前的风险下,才能采取适当的行动与策略来规避隐私泄露,保护自身权益。安全意识的提高可以最大限度地规避各种算法隐私的盲区。

总之,APP算法获取用户信息已桐坦碰是大趋势,但用户也不是毫无对策的。通过以上几点,用户可以学会主动审查与规避,选择值得信赖的服务与产品,不断提高识别能力,这些积极举措可以在大数据环境下尽可能地维护自身的隐私与权益。但信息泄露的风险仍然存在,用户必须保持警惕的心态。

② 盘点政府推动大数据应用及发展的举措

盘点政府推动大数据应用及发展的举措
一、政府:推动大数据应用的最关键力量
(一)政府掌握大量最具应用价值的核心数据,是推动大数据应用的最关键力量
根据麦肯锡大数据研究报告指出, 各个行业利用大数据价值的难易度以及发展潜力 对比下,政府利用大数据难度最低而潜力最大。
大数据
另一方面政府开放大数据运用已经是大势所趋:
1、 政府掌握了大量最具应用价值的核心数据。 过去十多年来政府投资进行了大量电子政务或者称为政府信息化的工作,后台积累了大量的数据,而这些数据和公众的生产生活息息相关。有研究表明政府所掌握的数据使政府成为了一个国家最重要的信息保有者,有百分之七十到八十的核心数据存在于政府的后台 。
2、 开放数据本身就是政府在大数据时代提供的一项公共服务。 政府数据本质上是国家机关在履行职责时所获取的数据,采集这些数据的经费来自于公共财政,因而这些数据是公共产品,归全社会所有,应取之于民,用之于民。
3、 政府开放数据供社会进行增值开放和创新应用,推动经济增长乃至整个经济增长方式的转型。 数据是互联网创新的重要基础,如果政府不开放这一部分数据,很多创新应用没有数据作为支持,数据开发者能利用政府开放的数据,提供更好的服务,创造更多的价值, 这个过程能够提高整个国家在大数据时代的竞争力。
4、 政府开放数据推动经济增长获得的税收高于单纯卖数据获得的收入。 201 年世界经合组织在关于开放政府数据的报告中提到政府通过开放数据推动经济增长,从而获得的税收收入远高于单卖数据所能获得收入。开放数据激发经济活力从而得到税收提升,这是一个良 性循环,更是一个能创造巨大公共价值的全局性的战略。
(二) 国内外政府开放数据的情况
在 2009 年奥巴马签署开放政府数据的行政命令后,这些年来开放政府数据已成为了世界性的一个趋势。美国联邦数据平台 Data.gov 上线后,在美洲、欧洲、亚洲等地,开放政府数据已成为了政府的一项重要工作。美国联邦政府的开放政府数据平台开放了来自多个领 域的 13 万个数据集的数据。这些领域包括图中所列的农业、商业、气候、生态、教育、能源、金融、卫生、科研等十多个主题。这些主题下的数据都是美国联邦政府的各个部委所开放的。英国、加拿大、新西兰等国在 2009 年之后都建立起了政府数据开放平台,成为 了国际信息化和大数据领域的一个重要趋势。
大数据
在我国, 2011 年香港特区政府上线了 data.gov.hk,称为香港政府资料一线通。上海在 2012年 6 月推出了中国大陆第一个数据开放平台。之后,北京、武汉、无锡、佛山南海等城市也都上线了自己的数据平台。
大数据
(三)、 大数据对于政府治理具有极大的价值
大数据其实对政府的治理带来了全新的价值,无论是对宏观经济的决策能力、产业聚集能力、协同治理能力、社会管理能力、公众服务能力、快速响应能力的提升,大数据都可以在有很大层面上帮助政府治理。
大数据大数据
(四)、大数据上升至国家战略成为共识。
大数据时代,对大数据的开发、利用与保护的争夺日趋激烈,制信权成为继制陆权、制海权、制空权之后的新制权,大数据处理能力成为强国弱国区分的又一重要指标。国际上以美国为代表的发达国家纷纷布局大数据产业,相继推出大数据相关政策,大力支持大数据产 业在本国的发展。以美国为例,美国从开展关键技术研究、推动大数据应用和开放政府数据三方面布局大数据产业,尤其在开放政府数据方面非常积极,通过 Data.gov开放 37 万个数据集,并开放网站的 API 和源代码,提供上千个数据应用。我们认为,大数据未来将 引发新一轮大国竞争,大数据对整个世界的影响力会呈现爆发性增长趋势,因此包括我国在内的国家会在政策支持力度上不断提升,大数据战略将上升至国家战略已毋庸臵疑。
大数据
(五)、 我国 高度重视大数据未来发展
自去年 3 月“大数据”首次出现在《政府工作报告》中以来,国务院常务会议一年内 6次提及大数据运用。近期在 6 月 17 日的国务院常务会议上,李克强总理再次强调“我们正在推进简政放权,放管结合、优化服务,而大数据手段的运用十分重要。” 7 月 1 日, 国务院办公厅印发了《关于运用大数据加强对市场主体服务和监管的若干意见》。
大数据
大数据大数据
(六). 各部委行动时间表已经确,我国大数据发展面临历史性机遇
值得注意的是,近期国务院出台文件对各个部委推进大数据任务制定了明确的时间表,很多推进工作任务要求在 2015 年 12 月底前出台政策并实施,近期将是我国大数据发展政策出台的密集期。

表 3: 各部委推进大数据应用时间表
序号工作任务负责单位时间进度1加快建立公民、法人和其他组织统一社会信用代码制度。发展改革委、中央编办、公安部、民政部、人民银行、税务总局、工商总局、质检总局2015 年 12 月底前出台并实施2全面实行工商营业执照、组织机构代码证和税务登记证“三证合一”、 “一照一码”登记制度改革。工商总局、中央编办、发展改革委、质检总局、税务总局2015 年 12 月底前实施3建立多部门网上项目并联审批平台,实现跨部门、跨层级项目审批、核准、备案的“统一受理、同步审查、信息共享、透明公开”。发展改革委会同有关部门2015 年 12 月底前完成4推动政府部门整合相关信息,紧密结合企业需求,利用网站和微博、微信等新兴媒体为企业提供服务。网信办、工业和信息化部持续实施5研究制定在财政资金补助、政府采购、政府购买服务、政府投资工程建设招投标过程中使用信用信息和信用报告的政策措施。财政部、发展改革委2015 年 12 月底前出台并实施6充分运用大数据技术,改进经济运行监测预测和风险预警,并及时向社会发布相关信息,合理引导市场预期。发展改革委、统计局持续实施7支持银行、证券、信托、融资租赁、担保、保险等专业服务机构和行业协会、商会运用大数据为企业提供服务。人民银行、银监会、证监会、保监会、民政部持续实施8健全事中事后监管机制,汇总整合和关联分析有关数据,构建大数据监管模型,提升政府科学决策和风险预判能力。各市场监管部门2015 年 12 月底前取得阶段性成果9在办理行政许可等环节全面建立市场主体准入前信用承诺制度。 信用承诺向社会公开,并纳入市场主体信用记录。各行业主管部门2015 年广泛开展试点, 2017 年 12 月底前完成10加快建设地方信用信息共享交换平台、部门和行业信用信息系统,通过国家统一的信用信息共享交换平台实现互联共享。各省级人民政府,各有关部门2016 年 12 月底前完成11建立健全失信联合惩戒机制,将使用信用信息和信用报告嵌入行政管理和公共服务的各领域、各环节,作为必要条件或重要参考依据。在各领域建立跨部门联动响应和失信约束机制。建立各行业“黑名单”制度和市场退出机制。推动将申请人良好的信用状况作为各类行政许可的必备条件。各有关部门,各省级人民政府2015 年 12 月底前取得阶段性成果12建立产品信息溯源制度,加强对食品、药品、农产品、日用消费品、特种设备、地理标志保护产品等重要产品的监督管理,利用物联网、射频识别等信息技术,建立产品质量追溯体系,形成来源可查、去向可追、责任可究的信息链条。商务部、网信办会同食品药品监管总局、农业部、质检总局、工业和信息化部2015 年 12 月底前出台并实施13加强对电子商务平台的监督管理,加强电子商务信息采集和分析,指导开展电子商务网站可信认证服务,推广应用网站可信标识,推进电子商务可信交易环境建设。健全权益保护和争议调处机制。工商总局、商务部、网信办、工业和信息化部持续实施14进一步加大政府信息公开和数据开放力度。除法律法规另有规定外,将行政许可、行政处罚等信息自作出行政决定之日起 7 个工作日内上网公开。各有关部门,各省级人民政府持续实施15加快实施经营异常名录制度和严重违法失信企业名单制度。建设国家企业信用信息公示系统,依法对企业注册登记、行政许可、行政处罚等基本信用信息以及企业年度报告、经营异常名录和严重违法失信企业名单进行公示,并与国家统一的信用信息共享交换平台实现有机对接和信息共享。工商总局、其他有关部门,各省级人民政府持续实施16支持探索开展社会化的信用信息公示服务。建设“信用中国 ”网站,归集整合各地区、各部门掌握的应向社会公开的信用信息,实现信用信息一站式查询,方便社会了解市场主体信用状况。各级政府及其部门网站要与 “信用中国 ”网站连接,并将本单位政务公开信息和相关市场主体违法违规信息在“信用中国 ”网站公开。发展改革委、人民银行、其他有关部门,地方各级人民政府2015 年 12 月底前完成17推动各地区、各部门已建、在建信息系统互联互通和信息交换共享。在部门信息系统项目审批和验收环节,进一步强化对信息共享的要求。发展改革委、其他有关部门持续实施18健全国家电子政务网络,加快推进国家政务信息化工程建设,统筹建立人口、法人单位、自然资源和空间地理、宏观经济等国家信息资源库,加快建设完善国家重要信息系统。发展改革委、其他有关部门分年度推进实施, 2020 年前基本建成19加强对市场主体相关信息的记录,形成信用档案。对严重违法失信的市场主体,按照有关规定列入“黑名单”,并将相关信息纳入企业信用信息公示系统和国家统一的信用信息共享交换平台。各有关部门2015 年 12 月底前实施20探索建立政府信息资源目录。各有关部门2016 年 12 月底前出台目录编制指南21引导征信机构根据市场需求,大力加强信用服务产品创新,进一步扩大信用报告在行政管理和公共服务及银行、证券、保险等领域的应用。发展改革委、人民银行、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果22落实和完善支持大数据产业发展的财税、金融、产业、人才等政策,推动大数据产业加快发展。发展改革委、工业和信息化部、财政部、人力资源社会保障部、人民银行、网信办、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果23加快研究完善规范电子政务,监管信息跨境流动,保护国家经济安全、信息安全,以及保护企业商业秘密、个人隐私方面的管理制度,加快制定出台相关法律法规。网信办、公安部、工商总局、工业和信息化部、发展改革委等部门会同法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)24推动出台相关法规,对政府部门在行政管理、公共服务中使用信用信息和信用报告作出规定,为联合惩戒市场主体违法失信行为提供依据。发展改革委、人民银行、法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)25建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等。加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准。引导建立企业间信息共享交换的标准规范。工业和信息化部、国家标准委、发展改革委、质检总局、网信办、统计局2020 年前分步出台并实施26推动实施大数据示范应用工程,在工商登记、统计调查、质量监管、竞争执法、消费维权等领域率先开展示范应用工程,实现大数据汇聚整合。在宏观管理、税收征缴、资源利用与环境保护、食品药品安全、安全生产、信用体系建设、健康医疗、劳动保障、教育文化、交通旅游、金融服务、中小企业服务、工业制造、现代农业、商贸物流、社会综合治理、收入分配调节等领域实施大数据示范应用工程。

③ 大数据时代如何做好数据治理

企业数据分析系统的数据来源是各个业务系统或手工数据,这些数据的格式、内容等都有可能不同。如果不进行数据治理,数据的价值难以发挥。只有对数据标准进行规范,管理元数据、数据监控等,才能得到高质量的数据。得到规范的数据后,才可在此基础上进行主题化的数据建模、数据挖掘、数据分析等。

2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划、POC尤其风生水起,带动了一波大数据应用的热潮,这个热潮和当初数据仓库进入中国时的2000年左右很相似:应用还没有想好,先归集一下数据,提供一些查询和报表,以技术建设为主,业务推动为辅。这就导致了这股Hadoop热潮起来的时候,传统企业都是以数据归集为主的,而BAT这样的企业则天生以数据为生,早早进入了数据驱动技术和业务创新的阶段。

随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破?相比传统数仓时代,进入Hadoop集群的数据更加的多样、更加的复杂、量更足,这个数仓时代都没有处理好的事情,如何能够在大数据时代处理好,这是所有大数据应用者最最期盼的改变,也是大数据平台建设者最有挑战的难题:数据治理难的不是技术,而是流程,是协同,是管理。 睿治数据治理平台平台架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。

建立完整的、科学的、安全的、高质量的数据管控技术体系,是首要的任务。作为数据管控的基石,为了更好支撑后续工作的开展,技术体系必须一步到位,是功能完备、高质量、高扩展性的,而不是仅实现部分功能,或者功能不完善的“半成品”。

叠加更多业务数据、细化数据业务属性与管理属性、优化与调整数据管控流程,尤其是适应未来的现代企业数据管控制度的建立完善,是逐步积累推广、不断磨合改进的长期过程。这些工作应及早启动,并成为后续大数据平台建设工作的重点。

谈大数据时代的数据治理 当前要做的是功能框架的完善,而完善的着力点则是“数据资产目录”:用资产化的视角来管理一个企业的数据,只有把数据作为资产来认识和管理,大数据项目才能达成预期,也能够治理好。大数据时代带来的价值,个人认为主要有两个,一个是技术架构,主要是架构理念的进步,另外一个更重要的则是对数据的重视。大数据时代是数据的时代,IT向DT转型,不单单是BAT,所有的IT公司,未来都在数据这两个字上。

对于一个企业来说,把数据作为资产,才是建设大数据的最终目的,而不是仅仅是因为Hadoop架构带来性价比和未来的扩展性。当一个企业把数据作为资产,他就像管理自己名下存折、信用卡一样,定期梳理,无时无刻不关心资产的变化情况,关注资产的质量。

而资产目录就是管理资产的形式和手段,他像菜单一样对企业的资产进行梳理、分门别类,提供给使用者;使用者通过菜单,点选自己需要的数据,认可菜单对应的后端处理价值,后厨通过适当的加工,推出相应的数据服务;这是一个标准的流程,而这些流程之上,附着一整套数据管理目标和流程。

大数据平台以数据资产目录为核心,将元数据、数据标准、主数据、数据质量、数据生命周期、数据轮廓等信息在逻辑层面关联起来,在管理层面上整合成统一的整体,构建起数据管理体系,全面的支持数据服务等具体应用。

大数据平台实现了数据存储、清洗和应用。在数据汇入和汇出的过程中,需要对数据的元数据进行统一记录和管理,以利于后续的数据应用和数据血缘分析。数据质量一直是数据集成系统的基础工作,对数据的各个环节设置数据质量检查点,对数据质量进行剖析、评估,以保证后续应用的可信度。

在数据收集的过程中,随着数据维度、指标的聚集,如何找到所需的业务指标及属性,并且评估相关属性的业务及技术细节,需要对收集的所有数据进行业务属性,并进行分类,建立完善的数据资产目录。

数据资产目录是整个大数据平台的数据管理基础,而数据资产目录由于数据的多样性,在使用的过程中,必然涉及数据权限的申请、审批管控流程,而管控流程的建立依赖于相应岗位的设立和对应职责的建立。

大数据平台的数据管理架构规划,通过数据物理集中和数据逻辑整合,彻底摆脱企业“数据竖井”的困境。大数据平台数据管理架构分为功能架构、流向规划和数据架构三个层面。

数据管理功能架构:借鉴DAMA数据管理和DMM数据成熟度理论,着眼于数据管理技术和数据管理流程融合,组织数据管理功能。

数据流向规划架构:规划整个大数据平台的数据流向,并在数据流入、数据整合、数据服务的具体环节实现精细化管理。

数据管理的数据架构:以数据资产目录为核心,数据项为最小管理单元,将技术元数据(实体、属性和关系)、业务元数据和管理元数据(数据标准、主数据、数据质量、数据安全)融合为彼此紧密联系、密不可分的整体,共同构成精细化管理的数据基础。

数据管理在整个大数据平台不仅仅是一个主要功能模块,它还是整个企业层面数据治理的重要组成部分,它是技术和管理流程的融合,也需要合理管控流程框架下组织机构之前的协调合作。如何利用统一的数据管理模块对企业所有进入到数据湖的数据进行有效管控,不单单取决于数据管理模块本身,也取决于元数据的合理采集、维护,组织结构及制度的强力支持保证。

谈大数据时代的数据治理 大数据平台数据管理参照了DAMA对于数据管理的九个管理目标,并进行裁剪,并对部分管理目标进行了合并,并参照了CMMI制定DMM数据成熟度目标,采用循序渐进,逐步完善的策略对管理目标进行分阶段完成,制定完整的管控流程和数据治理规范,以便持续的对数据进行管理,递进实现DMM定义的成熟度目标。

亿信睿治数据治理管理平台和DAMA的对应关系如下:

谈大数据时代的数据治理 大数据平台数据管理的核心内容是数据资产目录,围绕数据资产目录的数据流入、数据整合、数据服务都是数据管理的核心。数据管理主要管理数据的流动,以及管理流动带来的数据变化,并对数据底层的数据结构、数据定义、业务逻辑进行采集和管理,以利于当前和未来的数据使用。为了更好的对数据进行管理和使用,制度层面的建设、流程的设立必不可少,同时也兼顾到数据在流动过程中产生的安全风险和数据隐私风险。

因此数据管理介入到完整的数据流转,并在每个节点都有相应的管理目标对应,整个数据流框架如下图所示:

谈大数据时代的数据治理 企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖的数据进行严格的出入库管理,保证数据可信度,并定期进行数据质量剖析检查,确保数据资产完善、安全、可信,避免“不治理便破产”的谶言。

④ 身处大数据时代,我们该如何做

大数据时代,可以知道世界上任何一个角落上发生的事。网络方便人们获取信息的同时,也大大增加了人们信息泄露的可能性。加米谷大数据来分享我们该如何保护自己的个人信息。

如何防范自己的个人信息泄露呢?

1、不要随便填写各种各样的调查问卷。现在在街上、校园、网上都会遇到各种问卷调查,那么此时一定要注意防范,不要轻易填写个人信息。

2、不要贪小便宜。对于一些留下联系方式或者注册某个APP就能得到一些精美的小礼品的活动,千万要注意,因为你的个人信息大部分就是这样泄露的。

3、不要随便扔快递单据。快递单那里会写上你的收货地址、姓名和联系方式,如果随便丢弃,就相当于自己主动泄露个人信息。

4、不要随意丢弃车票和机票。现在的飞机票和火车票都实行了实名制,上面有自己的身份证等信息,随意丢弃会导致信息泄露。

5、及时删除在打印店打印的资料。在打印店打印,很多人喜欢将U盘的文件拷到电脑上,打印之后又忘记删除,特别是一些简历等含有个人信息的资料。

6、网络上的个人信息也需要进行保护。

⑤ 大数据时代信息安全现状以及对策建议

【导读】随着大数据的推行,我们的个人信息安全受到了很大的安全隐患,相信大家有过这样的感觉,自己手机总是可以莫名其妙的收到很多消息或电话,浏览淘宝,抖音时总是自己想的,其实这都是大数据的后台推算结果,今天我们就来聊聊大数据时代信息安全现状以及对策建议,希望对大家有所帮助。

鉴于大数据资源在国家安全中的战略价值,除加强基础软硬件设施建设、网络攻击监控、防护等方面外,对国内大数据服务和大数据应用提出以下建议。

对重启早要的大数据应用或服务进行国家网络安全审查。重要的大数据应用程序或服务涉及国民经济、人民生活和政府治理应该被包括在国家网络安全审查的范围,并明确安全评估规范应尽快制定确保这些大数据平台有严格的和可靠的安全措施,防止受到攻击和受到敌对势力。

合理限制敏感和重要部门使用社交网络工具。政府部门、中央企业和重要信息系统单位应避免或限制使用社交网络工具作为日常办公的通讯工具,将办公移动终端和个人移动终端分开使用,防止重要保密信息的泄露。

敏感和重要的部门应该谨慎使用第三方云计算服务。云计算服务是大数据的主要载体。越来越多的政府部门、企事业单位在第三方云计算平台上建立了电子政务和企业业务系统。然而,由于缺乏安全意识、乎派安全专业知识和安全措施,第三方云计算平台本身的安全往往得不到保障。因此,政府、中央企业和重悄顷雀要信息系统单位应谨慎使用第三方云服务,避免使用公共云服务。同时,国家应尽快出台云服务安全评估和测试的相关规范和标准。

严格规范和限制境外机构数据跨境流动。在中国提供大数据应用或服务的海外机构应接受更严格的网络安全审计,以确保其数据存储在国内服务器上,并严格限制数据跨境流动。

以上就是小编今天给大家整理的关于“大数据时代信息安全现状以及对策建议”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!

⑥ 大数据时代下,如何做好数据管理工作

进入新的历史时期以来,收集更加丰富的数据是摆在各个企业面前的主要任务,一旦企业不能收集范围更广的信息,那么企业管理决策则极易出现更多的失误。企业要重视内部数据信息管理工作,保证当前数据管理与大数据时代特点相一致。第一,进入大数据时代以来,由于涌现出数不胜数的数据信息,因此如果传统数据信息管理技术不能及时改变则极有可能影响大数据的应用,所以要求当前企业必须及时引进先进的软件与硬件,才能推动大数据的普遍应用。第二,由于数据信息的海量出现,因此企业还需不断提高数据信息的管理能力,要保证及时处理与加工得到的各种数据信息,要及时掌握当前最新数据。很多企业已经意识到信息数据的重要性,但因为不拥有先进的技术措施,各种数据信息还不能发挥应有的作用。第三,在企业管理决策过程中,虽然大数据发挥着不可替代的作用,但同时也需重视数据碎片的作用,一个企业要想取得成功则必须重视二种数据的应用,才能使二种数据相互协调,保证数据分析具有更高的科学性,进一步简化分析过程,减轻工作人员的劳动强度。企业还需及时创新内部知识管理,要尽快引入新型知识管理模式。在实际运行中,知识管理其实就是数据的管理。企业在做出管理决策时,知识提取是一个不可缺少的过程,只有大力应用各种知识才能制订最为合理的决策。当前由于大数据技术的影响,人们日益意识到知识的重要性,很多企业当前将建设现代化的知识管理模式放在重要位置,高度重视知识管理工作。同时企业也不能过分依赖大数据的应用,而忽略了主观决策的重要性,要保证二者相互协调、相互促进,才能帮助企业做出正确。

⑦ 中国未来在大数据时代应该怎么做

大数据是未来引领性的先进技术,它是信息技术领域的制高点。大数据信息的全面收集、整理、分析和深度利用将成为未来国家绝模之间的主要竞争方向。

未来中国在大数据时代应主要做好以下3点:桥李

第一、要从数据科学的高度,推进对大数据的研发,掌握关键与核心技术。在作为大数据基础的人工智能领域,需要有关部门给予高度支持加大创新与研发支持力度。

第二、坚持抓应用促发展。中国的优势在市场庞大,发展大数据应并消缓让市场应用需求来牵引。目前在智慧城市、智慧产业、物联网发展中,都有许多与生产生活密切相关的实际需求,在等待大数据帮忙解决。

第三、发展大数据需要进行制度创新。一是建立创新机制;二是需要相反的大众创新模式;三是对创新本身的再创新,也就是对大众创新模式的创新。大众创新是草根不用先转化为精英再创新,而是分布在一线岗位就可以创新。

⑧ 大数据时代的应对措施

一个好的企业应该未雨绸缪,从现在开始就应该着手准备,为企业的后期的数据收集和分析做好准备,企业可以从下面六个方面着手,这样当面临铺天盖地的大数据的时候,以确保企业能够快速发展,具体为下面六点。
目标
几乎每个组织都可能有源源不断的数据需要收集,无论是社交网络还是车间传感器设备,而且每个组织都有大量的数据需要处理,IT人员需要了解自己企业运营过程中都产生了什么数据,以自己的数据为基准,确定数据的范围。
准则
虽然每个企业都会产生大量数据,而且互不相同、多种多样的,这就需要企业IT人员在现在开始收集确认什么数据是企业业务需要的,找到最能反映企业业务情况的数据。
重新评估
大数据需要在服务器和存储设施中进行收集,并且大多数的企业信息管理体系结构将会发生重要大变化,IT经理则需要准备扩大他们的系统,以解决数据的不断扩大,IT经理要了解公司现有IT设施的情况,以组建处理大数据的设施为导向,避免一些不必要的设备的购买。
重视大数据技术
大数据是最近几年才兴起的词语,而并不是所有的IT人员对大数据都非常了解,例如如今的Hadoop,MapRece,NoSQL等技术都是2013年刚兴起的技术,企业IT人员要多关注这方面的技术和工具,以确保将来能够面对大数据的时候做出正确的决定。
培训企业的员工
大多数企业最缺乏的是人才,而当大数据到临的时候,企业将会缺少这方面的采集收集分析方面的人才,对于一些公司,特别是那种人比较少的公司,工作人员面临大数据将是一种挑战,企业要在平时的时候多对员工进行这方面的培训,以确保在大数据到来时,员工也能适应相关的工作。
培养三种能力
Teradata大中华区首席执行官辛儿伦对新浪科技表示,随着大数据时代的到来,企业应该在内部培养三种能力。第一,整合企业数据的能力;第二,探索数据背后价值和制定精确行动纲领的能力;第三,进行精确快速实时行动的能力。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进企业快速发展。

⑨ 如何实现大数据时代的政府治理创新

1、在政府系统进一步确立大数据的理念,研究制定大数据施政发展规划

2、夯实大数据产业基础,提供大数据施政平台技术支撑。

3、打通各部门各层级之间信息孤岛,实现大数据信息资源互联共享。

4、发挥第三方力量的作用,政府积极购买大数据相关技术服务

阅读全文

与大数据时代可以做哪些措施相关的资料

热点内容
易损件市场怎么样 浏览:767
电销代理公司如何盈利 浏览:828
工厂清洁产品工具有哪些 浏览:77
投标中财务数据不达标怎么办 浏览:317
行程单信息哪里查询 浏览:999
产品销售线索怎么获得 浏览:344
重庆奉节批发黄桃的市场在哪里 浏览:506
安达代理费多少钱 浏览:143
要推一款产品如何推 浏览:79
数据的降维什么时候用 浏览:967
刚签约的合同为什么可以被交易 浏览:554
技术鉴定官方认定怎么做 浏览:425
中国有哪些国际一流工业产品 浏览:102
确定平面的位置需要多少个数据 浏览:538
股票交易利率是什么 浏览:922
尾盘集合竞价大宗交易多久才能卖 浏览:84
现房产品物业费从什么时候收 浏览:97
技术性管理人才是什么 浏览:396
出口代理贸易公司承担什么风险 浏览:770
怎么挂代理隐藏数据包目的ip 浏览:898