导航:首页 > 数据处理 > 哪些侵权性大数据技术不可使用

哪些侵权性大数据技术不可使用

发布时间:2023-05-03 06:45:36

⑴ 简答大数据安全的特征

大数据安全面临着许多挑战,需要通过研究关键技术、制定安全管理策略来应对这些挑战。当前,大数据的应用和发展面临着许多安全问题,具体来说有以下几个方面。(1)大数据成为网络攻击的显着目标在网络空间中,大数据是更容易被“发现”的大目标,承载着越来越多的关注度。一方面,大数据不仅意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者,成为更具吸引力的目标;另一方面,数据的大量聚集,使黑客一次成功的攻击能够获得更多的数据,无形中降低了黑客的进攻成本,增加了“收益率”。(2)大数据加大隐私泄露风险从基础技术角度看,Hadoop对数据的聚合增加了数据泄露的风险。作为一个分布式系统架构,Hadoop可以用来应对PB甚至ZB级的海量数据存储;作为一个云化的平台,Hadoop自身存在云计算面临的安全风险,企业需要实施安全访问机制和数据保护机制。同样,大数据依托的基础技术——NoSQL(非关系型数据库)与当前广泛应用的SQL(关系型数据库)技术不同,没有经过长期改进和完善,在维护数据安全方面也未设置严格的访问控制和隐私管理机制。NoSQL技术还因大数据中数据来源和承载方式的多样性,使企业很难定位和保护其中的机密信息,这是NoSQL内在安全机制的不完善,即缺乏机密性和完整性。另外,NoSQL对来自不同系统、不同应用程序及不同活动的数据进行关联,也加大了隐私泄露的风险。此外,NoSQL还允许不断对数据记录添加属性,这也对数据库管理员的安全性预见能力提出了更高的要求。从核心价值角度看,大数据的技术关键在于数据分析和利用,但数据分析技术的发展,势必对用户隐私产生极大威胁。

⑵ 下面不适用于大数据的技术是什么

下列哪项不属于大数据技术( C )A.关系数据库B.数据挖掘C.分布式数据库D.可扩展的存储系统

⑶ 大数据不是万能的.它有哪些局限性

局限一:不当负担

大数据到底是否利大于弊并不是我们现阶段所关心的问题,而能否识别其益处的非显性局限才是技术人员最应该关注的。

大数据支持者的核心主张是,但凡数据,必定有正面价值。然而这个想法是错误的,对公司管理层而言,看起来似乎无伤大雅的信息搜寻,却往往对数据收集的主体带来了不当负担。

比如,全球大学排名与联邦量刑指南是两大复杂社会系统演变而成的量化值,该方面的相关人员均表示,这样的全方位大数据归集整理无疑损害了他们原本系统的秩序。

而第一个提出“大数据时代”这一概念的麦肯锡公司(McKinsey)也曾坦言,“事实上,截至目前,并没有有效的证据表明数据的强度与特定部门生产力之间存在一定积极的联系。”在随后的几年内,尽管信息量化的浪潮已开足马力,但相关证据依然少之又少。

局限二:易被操控

数据往往比人们想象的更易被操控。据Target前经理表示,公司管理部门曾尝试通过收集分析顾客问卷打分表以期提升顾客满意度,然而此举却造成员工伪造客户信息以夸大自己的工作表现。不受监管的可编制数据一旦被伪造,那么用它分析出的结果便不具任何意义。

而先前拥有自主执行权的负责数据编制的员工,此时却倍感压力重重,因为他们不得不接受不间断的中央监控。

局限三:不可量化

许多重要的问题是根本不适合也无法定量分析的,它们需要对价值、驱动力、所处环境及其他种种核心因素的评判。而找到一个绝对中立不偏不倚并受众人尊重信任的人,制定量化指标来对所有因素进行评定打分,是决计无法实现的。这便是一切社会机制中固有的难题。

局限四:衡量知识?

新基础科学知识对经济结构的影响过于分散和复杂,经济学家很难进行量化衡量。

当然,社会和经济制度的定量分析在最近几年存在系统性的缺陷,但这并不意味着未来的深入研究会遭遇同样的短板。然而,若是沿袭相同的基础方法论,那么即便收集再多的数据,这些缺陷也将持续存在。根据网上资料整理

⑷ 网络信息内容服务平台不能使用的技术手段是

网络信息内容服务使用者和网络信息内容生产者、网络信息内容服务平台不得通过人工方式或者技术手段实施流量造假、流量劫持以及操纵用户账号、非法交易账号、虚假注册账号等行为,破坏网络生态秩序。

网络信息发布渠道或平台较多,如:搜索引擎等,网络信息是跨国界流动的,信息流引领技术流、资金流、人才流。

(4)哪些侵权性大数据技术不可使用扩展阅读:

“没有网络安全就没有国家安全,没有信息化就没有现代化竖敏”,“网络安全和信息化对一个国家很多领域都是牵一发而动全身的”,习近平曾如此强调。当今世界,科技进步日新月异,信息化和经济全球化相互促进,互联网、云计算、大数据等现代信息技术深刻改变着人类的思维、生产、生活、学习方式。

网络安全作为国家总体安全体系的重要组成和非传统安全的重要领域,牵涉到国家安全和社会稳定,其发展战略已成为实现“两个百拍纤碰年”目标和中国梦的袭谈重要内容,是中国面临的新的综合性挑战。

在中央网络安全和信息化领导小组第一次会议上,习近平指出,网络安全和信息化是一体之两翼、驱动之双轮,必须统一谋划、统一部署、统一推进、统一实施。做好网络安全和信息化工作,要处理好安全和发展的关系,做到协调一致、齐头并进,以安全保发展、以发展促安全,努力建久安之势、成长治之业。

⑸ 大数据技术,主要涉及哪些安全问题

1、用户名&口令&撞库&诈骗&钓鱼



这几点主要放在一起,因为都与数据库泄露相关。当手上的数据库积累到一定程度的时候,大部分人的曾用密码或现仔差用密码都能查的到,包括身份证信息。所以很多时候盗号之类的攻击是根本就不需要 什么特殊的技巧,直接找数据库贩子买数据即可了。这也是为什么现在支付宝和QQ微信这类的厂商会弄风控的原因,登录个号需要密码,短信验证码的多重验证,需要验证你是不是在常用地址登录,是不是在常用电脑登录等。



2、抓鸡&应急响应



当0day爆发的时候,手上有积累了域名/IP/服务数据的就可以疯狂的来一发了,当初心脏出血的时候有人跑爆了好多硬盘,最近无论是st2还是魔法图片从乌云首页就能看出,都是平时有积累一些资源的人可能就能赶在企业应急响应之前玩一把。像zoomeye和nosec还有国外的shodan这种的本质就是收集和分析了大量的数据。



3、规则分析



根据已有的一些漏洞库,分析规则,就很有可能发现一些新的漏洞。比起当初像一个无头苍蝇去找漏洞的时代还是要简单些。包括扫描器规则,积累的越多就能发现越多的漏洞。



关于大数据技术,主要涉及哪些安全问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多洞戚腔关于数据分析师、大数据工程师的技巧及素材等内容,纳衫可以点击本站的其他文章进行学习。


以上是小编为大家分享的关于大数据技术,主要涉及哪些安全问题?的相关内容,更多信息可以关注环球青藤分享更多干货

⑹ 以下哪个选项是目前利用大数据分析技术无法进行有效支持的

大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、Value(价值)、真实性(Veracity)。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡简改和分片的确是需要深入的思考和设计。大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数者数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总拦毕判等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取: 关系数据库、NOSQL、SQL等。基础架构: 云存储、分布式文件存储等。数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。统计分析: 假设检验、显着性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)模型预测 :预测模型、机器学习、建模仿真。结果呈现: 云计算、标签云、关系图等。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

⑺ 区块链电子证据效力,微版权如何用区块链赋能知识产权保护

国知局认可区块链电子证据效力,微版权可以提供区块手禅链确权存证、侵权监测、网络取证等服务,全面赋能知识产权保护。
易保全旗下区块链知识产权保护平台——微版权,微版权能将摄影用户主体信息、存证时间、存证过程和存证内容等信息生成唯一对应的数字指纹,加密存储到区块链上,并生成全局监督摘要,同步到公证处、仲裁委等机构官网,接受公众监督查询,数字指纹启薯早和全局监督摘要会记录在区块链确权证书上。
同时,微版权可提供在线版权登记服务,用户通过微版权官网可在线申请由版权局出具的版权证书,包括纸质版权证书和数字版权证书,最快1天即可出证。帮助用户节约申请成本,提高版权登记效率,第一时间快速获得作品权属证据。
在侵权监测方面,微版权通过指纹特征提取与比对技术,结合网络爬虫、云计算、大数据分析等技术为图片、文字、视频等作品进行全网7*24小时侵权监测,对海量数据进行抽取、清洗、存储及管理,按一定算法自动识别和判断哪些内容涉及抄袭,爬取范围更广、成本更低、效率更高。
对于监测到的内容,微版权会按侵权对象、侵权作品和侵权结果进行分析和排序,输出侵权对象的联系悄雀方式、域名等数据,并自动进行分析整理,快速定位侵权主体。企业和律所可根据分析内容分配给相关律师进行维权跟进,提升维权效率。

⑻ 马化腾亚洲大数据出错原因

马化腾亚洲大数据出错的原因可能有很多,以下是一些可能的原因:
1. 数据源质量不高:数据源的质量可能不够高,导致数据分析出现偏差或者错误。这种情况下,可以考虑增加数据源或者对数据源进行筛选和宽档盯清洗。
2. 数据分析算法不够精准:数据分析算法不够精准,可能会导致分析结果出现误差。这种情况下,需要重新蠢逗评估算法的精准度,并且可能需要采用更高级的算法。
3. 数据处理过程中出现错误:数据处理过程中可能出现各种错误,例如数据丢失、数据格式转换错误等等。这种情况下,需要对数据处理过程进行严谨的测试和验证。
4. 数据分析人慎和员的能力和知识水平不足:数据分析人员的能力和知识水平不足,可能会导致分析结果出现问题。这种情况下,需要对数据分析人员进行培训和提高。
总之,马化腾亚洲大数据出错的原因可能有很多,需要进行系统性的分析和解决。

阅读全文

与哪些侵权性大数据技术不可使用相关的资料

热点内容
口罩出口信息怎么看 浏览:858
产品防伪数码是什么意思啊 浏览:159
市场营销有哪些应用 浏览:315
花喜代理怎么加盟 浏览:38
信息管理人员经历了哪些阶段 浏览:967
仁化汽车配件代理加盟如何 浏览:1000
之江生物产品销量怎么样 浏览:669
宇花灵技术怎么用 浏览:600
想去泉州卖菜哪个菜市场人流大 浏览:411
沈阳雪花酒水怎么代理 浏览:125
rng秘密交易是什么意思 浏览:732
重庆红糖锅盔怎么代理赚钱吗 浏览:383
考察投资项目关注哪些数据 浏览:592
家纺家具都有什么产品 浏览:37
丘氏冰棒产品有哪些 浏览:414
程序员如何拉到业务 浏览:177
揭阳火车站到炮台市场怎么走 浏览:843
二线国企程序员怎么提升技能 浏览:154
蓝翔技术学院西点多少钱 浏览:787
徐工集团北京代理点有哪些 浏览:531