导航:首页 > 数据处理 > 组织管理中如何保证数据的真实性

组织管理中如何保证数据的真实性

发布时间:2023-05-03 04:53:51

⑴ 如何加强财务数据真实性

1,确认的基链报表的真实性,应该从财务部的内核入手,即其是否具有良好的内搏桥孙部控制,这点很关键。
2.,应该要获取到其管理层对财务数据的有效性的承诺,确定管理层的风消运险水平,综合前期的调查,综合确定其财务报表的审计风险。
3.任何的审计,在做好前期的准备前提下,根据经验所确定的风险水平,认定所审查报表是真实、无虚假记载。

⑵ 数据安全保护的方法有什么

方法如下:

大数据安全防护要“以数据为中心”、“以技术为支撑”、“以管理为手段”,聚焦数据体系和生态环境,明确数据来源、组织形态、路径管理、应用场景等,围绕大数据采集、传输、存储、应用、共享、销毁等全过程,构建由组织管理、制度规程、技术手段组成的安全防护体系,实现大数据安全防护的闭环管理。

1.大数据采集安全

元通过数据安全管理、数据类型和安全等级打标,将相应功能内嵌入后台的数据管理系统,或与其无缝对接,从而保证网络安全责任制、安全等级保护、数据分级分类管理等各类数据安全制度有效的落地实施。

2.大数据存储及传输安全

通过密码技术保障数据的机密性和完整性。在数据传输环节,建立不同安全域间的加密传输链路,也可直接对数据进行加密,以密文形式传输,保障传输过程安全。数据存储过程中,可采取数据加密、磁盘加密、HDFS加密等技术保障存储安全。

3.大数据应用安全

除了防火墙、入侵监测、防病毒、防DDos、漏洞扫描等安全防护措施外,还应对账号统一管理,加强数据安全域管理,使原始数据不离开数据安全域,可有效防范内部人员盗取数据的风险。另外还应对手机号码、身份证号、家庭住址、年龄等敏感数据脱敏工作。

4.大数据共享及销毁

在数据共享时,除了应遵循相关管理制度,还应与安全域结合起来,在满足业务需求的同时,有效管理数据共享行为。在数据销毁过程中,可通过软件或物理方式操作,保证磁盘中存储的数据永久删除、不可恢复。

(1)物理安全措施:物理安全主要包括环境安全、设备安全、媒体安全等方面。处理秘密信息的系统中心机房应采用有效的技术防范措施,重要的系统还应配备警卫人员进行区域保护。

(2)运行安全安全措施:运行安全主要包括备份与恢复、病毒的检测与消除、电磁兼容等。涉密系统的主要设备、软件、数据、电源等应有备份,并具有在较短时间内恢复系统运行的能力。应采用国家有关主管部门批准的查毒杀毒软件适时查毒杀毒,包括服务器和客户端的查毒杀毒。

(3)信息安全安全措施:确保信息的保密性、完整性、可用性和抗抵赖性是信息安全保密的中心任务。

(4)安全保密管理安全措施:涉密计算机信息系统的安全保密管理包括各级管理组织机构、管理制度和管理技术三个方面。

国际标准化委员会的定义是"为数据处理系统和采取的技术的和管理的安全保护,保护计算机硬件、软件、数据不因偶然的或恶意的原因而遭到破坏、更改、显露。"中国公安部计算机管理监察司的定义是"计算机安全是指计算机资产安全,即计算机信息系统资源和信息资源不受自然和人为有害因素的威胁和危害。"

⑶ 如何保证绩效数据的真实性

前几天发表了一篇拙作——《浅谈绩效管理》,不曾想,引起了还算可以的反响。随之而来的是广泛的质疑,首先大家对我在文中所提到的绩效管理的几大任务,都表示赞同,但对于能否实现现这几大任务则纷纷表示质疑。无论网友还是现实之中的朋友,都提到单纯的凭借人力资源部如何实现有效的绩效管理?绩效指标如何制定?以及?
这第一个疑问是谁也解决不了的问题,因为绩效管理本身就不单纯是人力资源部门的职责,而应该是从老总到基层主管等各级直线主管的职责;第二个问题是纯粹技术上的问题,如果你不知道如何制定绩效指标,直接找一个做得比较成熟的组织复制一下就行了。第三个问题才是真正应该关心的问题,因为由于人的贪欲和懒惰以及中国人特别看重的人情等各方面的因素,往往使得组织所收集到的绩效数据缺乏真实性。这也验证了张居正的那句话——“天下事,不难于立法,而难于法之必行”。
人的惰性使得被考核者会有得过且过的心态,为了节省体力脑力宁可糊弄考核者也不远付出更多努力做好工作;而考核者则会懒得去深究被考核者的工作,懒得将被考核者的工作表现一五一十的真实详细的反映在数据上。
贪欲会使得被考核者想法设法的抬高自己的成果,即使是虚报。而考核者则碍于人情面子,在不损害自己利益的情况下会睁一只眼闭一只眼。
而,作为高高在上的领导,如果考核者被考核者串通好的话,是很容易被蒙骗的。所以,这种情况下,领导除非深入基层,否则根本无能为力。而,作为领导,一般情况下不止一个基层需要深入。领导如果都要深入了解后才能对这种情况进行惩戒,一是领导的工作量太大。而且,领导深入基层了,总不可能只管这一件事,围绕绩效数据收集的其他工作如果也存在类似情况要不要管呢?当然要管了!那围绕围绕绩效数据收集工作的工作呢?……这样一来,可能会让领导事必躬亲。领导事必躬亲可不是什么好情况,首先大事儿小事儿都要管,在一个人能力有限,知识有限,精力有限的情况下,会造成大事儿小事儿都管不好的结果的;再一个,领导虽然是领导,但是在一切具体事务的处理能力上未必就比这件事务的负责人能力强,让一个在某方面能力差的人去处理某方面的事务,结果会好吗?
前两天一同学和我一起讨论她们单位的绩效数据收集工作时,我猛然有了下面的想法(也许能在一定程度上保证绩效数据的真实性):
首先,做好分权。
比如,给每一个工作设一个专门的跟踪检查的人员(可以一个检查员同时监督检查几份工作),不让直线领导一个人完全掌控指挥权和考核权(直线领导当然有考核权,但是不能完全霸占考核权)。从某种意义上讲,管理首先就是要做好分工,对于权力的管理也是一样,就是做好分权。做事情的,管事情的,监督检查的,落实奖罚的一定要由不同的人来。这样在一定程度上可以保证权力行使的有效性和管理工作的真实性。现代国家体制中的权力分立制度就取得了很好的效果,不像古代中国,历朝都反腐,结果越反越腐……而现代政体的一个防止腐败发生的重要措施就是对政府强有力的监督检查。
我们可以这样来,这个监督检查人员一定是雹戚相对于基层单位是独立的,不能干预生产也不受基层主管的领导。同时,对检查人员也进行考核,但是他的指标设置要与被检查者的绩效指标相互矛盾。以,质量合格率为例,检查人员所检查出的不合格产品越多,则其评分越高;而生产人员生产的产品不合格率越低,则其评分越高。最后,检查单上要同时有检查人员和生产人员的签字确认方能生效,并且不能有涂迹肆备改。这样,为了得到较高的评分,检查人员和生产人员就产生了矛盾,他们所都能接受的一个结果肯定是如实反映事实的检查登记单。这样,贪欲的作用下,检查人员会努力查找不合格的产品;而生产人员则会努力完善产品品质。
其次,充分发掘数据的价值。
以来料检验单为例。来料检验单的主要作用是将来料通过检验分为合格与不合格两类。一般情况下,质检员检验完,填好来料检验单,根据质检单分好类后。来料检验单也就被放到一边了。但如果,我们将所有的来料检验单进行综合、统计,很轻易的就可以将采购原料的合格率统计出来,也就可以将采购员的这个考核指标的数据真实的反映出来。
再有一个,可以让工作人员做好工作记录(可以是每个班组出一个人负责此项工作),每天的工作时间内这个班组都做了哪些工作?做了多少?遇到了什么情况?姿毁出现了什么问题?如何解决的……到了月终或者年终发奖金的时候,就可以通过工作记录表来发掘有价值的数据。可以统计出每个班组的生产量、发生事故的概率、解决问题的能力等信息。然后根据组织目标,进行分类别分程度的进行奖励。再次,做好上下工序之间的制约。
举个例子,我们可以首先把每种生产材料作为跟踪目标,跟踪它在它所涉及到的生产环节的数据,然后把在整个生产过程中所体现出来的数据整理成数据流,如果正推倒推数据流都是顺畅的,则证明每个环节上的数据都是真实的。反之,则有环节存在弄虚作假的情况。
以加工业为例:进了多少吨的原材料?经过第一关的检查有多少吨是可用的?然后推算出它本应生产出多少初级产品?实际生产出了多少初级产品?第二关检查后多少初级产品是合格的?合格的初级产品又应该生产出多少二级产品?实绩生产出了多少二级产品?……一直跟踪到成品。如果这些数据正推,倒推都是成立的,则证明数据流有效。

⑷ 企业如何开展数据管理工作

企业数据化管理是近几年受众多老板欢迎的新管理理念,毕竟最主要的是减少里企业的管理成本,提高了企业的业绩,对老板来说就是赚钱!这是最关键的原因。

一套管理想导入企业当中,最大的阻碍不是金钱,而是最直接关联的受管理者——员工。记得有看过一则新闻,某公司因为想导入压迫式的管理方法,严重损害了员工的利益,导致全体员工罢工抗议,罢工近半个月,而后不得不搁浅。可以看出,被管理者是不可忽视的重要因素之一!

那近几年让老板和员工所接受的数据化管理它是怎么做的?什么又是数据化积分管理呢?我们一起解析:

数据化积分管理简单的说就是用积分对人的能力、热情、综合表现进行量化排名,用积分作为员工的导向,引导员工往企业想要的结果方向去走,到达企业最终的 目的。

成功之道积分系统管理软件就是这样一款帮助企业进行数据化管理和分析的一个软件系统。

第一步:根据每个岗位量化不同员工的工作,设置标准的积分规则,设置薪酬体系,跟积分挂钩,例如企业文化的考核:

⑸ 如何保证组织的数据,信息的准确性,完整性和可靠性,及时性,安全性与保密性

优化管理

⑹ 如何确保数据的真实有效

如何确保计划统计管理的真实性和有效性
各位朋友,做为业主方要经常收集施工单位上报的各种进度数据、工程量等,但是施工单位经常上报的数据不及时准确,
怎么样才能保证统计数据真实性和有效性呢?请给位赐教

------
智者明

由现场项目组或工程部加强承包商的周报(日报)管理,每周(关键工序统计到日,如:达因、试压包)要求承包商上报周报,包括:工程形象(设计、采购、施工、试车)、实物量、机具、投入劳动力、进度百分数、质量指标、HSE执行、存在问题、下周工作计划,等等。
月度报表就可以对照周报进行检查,至少减少承包商上报的数据不及时准确的问题,保证统计数据真实性和有效性,如果发现做假或失真,可以及时纠偏措施。
如果大部分承包商的数据都真实有效,则项目的统计众数也趋于真实有效。

让施工方做日报可能不容易实现(除非是管理相当严谨的施工方),大多数都做不到日报。但周报是必需的,否则不容易控制进度和质量,施工方也乐于接受,但关键质量控制点除外。

我说说我们单位的统计模式:
在施工前期建立相对完善的全项目进度计量系统,一般是按照施工工序排序,加载实物量和计量权重。在正式的施工中每天更新数据就ok了。这个工作量不是很大,关键是计量系统要做的严密并依据施工实际不断更新完善。该计量系统也可以作为进度款的申请依据。当然间断性的检查工作是必要的,可以检验施工承包方日报的数据准确性。我在这里一般不要求他们报周报,所有的数据一目了然。

--------------------------
如何确保监测数据真实准确?
2014/5/12 10:00:13
作者: 许颖 孙俊杰 石来元
目前,监测数据造假主要是修改设备工作参数或破坏采样系统。且看青岛环境空气自动监测站点实现全市联网管理后
“截至目前,青岛市共设立了23个环境空气自动监测站,对大气环境中主要污染物进行连续的监测,判断大气质量是否符合国家制定的大气质量标准,做到了空气质量的全程监测。” 山东省青岛市环境监测中心站相关负责人这样说。
近年来,各地纷纷建立环境空气自动监测站,空气质量监测能力得到了极大的提升。同时,环境空气自动监测也面临着一些问题,比如监测设备型号繁多、监测人员技术参差不齐、自动化空气质量监测过程中的数据质量控制环节不规范等。目前,保证监测数据的代表性、准确性、精密性、可比性和完整性,已经成为环境空气自动监测站面临的重点任务。
那么,青岛市如何建设环境空气自动监测站点?如何确保监测数据的准确性?
规范点位设置 确保监测数据的代表性
虽然青岛市市区在去年以前已经有13个环境空气监测站,但是随着环境问题的凸显,这些环境空气监测站已经远远不能满足空气监测的要求。去年11月,青岛市环保局按照山东省环保厅环境空气质量管理“上收一级”的要求,将黄岛区和即墨市、胶州市、平度市、莱西市的市控空气自动监测站纳入了全市联网管理,并施行了统一社会化运营。自此,全市共设立23个环境空气自动监测站,并按照空气质量新标准要求,在每个环境空气自动监测站配置了相应的仪器和设备。
那么,在环境空气自动监测站已经基本完善的基础上,青岛市环境监测中心站如何保证这些点位的设置具有代表性?
为了能更好地反映全市的空气质量,使得环境空气自动监测站点位的选择具有代表性,青岛市印发了《市控空气自动监测站统一运营实时方案》、《环境空气质量监测点位布设技术规范》等一系列文件,对点位设置、调整以及日常运行管理维护等方面进行了严格的规范和管理。
青岛市环境监测中心站负责组织对全市空气自动监测点位设置情况进行全面调查,按照国家有关技术规范,对现有空气自动监测点位进行技术评估,对不符合要求的提出整改意见和建议。
购买第三方服务 确保监测数据的准确性
“我们以前都是自行维护、运营环境空气质量监测站。”青岛市环境监测中心站的技术人员说:“随着环保任务量的不断增加,监测任务和数据统计、分析工作繁重,维护、运营环境空气质量监测站就有些力不从心了。”
青岛市环保局是如何解决这一矛盾的呢?
“在这种形势下,逐步培养社会化的运营机构,由政府购买服务,雇佣社会化专业的运营公司来操作,大大缓解了人员数量不足与工作量逐年增加的矛盾,现有的环境监测人员能够投入更多的精力进行数据的分析和研究工作。” 青岛市环境监测中心站相关负责人介绍说。
早在2012年年底,按照山东省环保厅的要求,青岛市的环境空气监测站实现了“转让——经营”模式质量管理机制,这一模式将监测设备进行有偿转让,并由专业队伍运营维护,设备的准确性由专业机构进行移动比对(即由运营单位利用移动监测车等便携式空气设备,对分布在各处的环境空气质量监测站进行同步比对监测)。环保部门通过对数据质量进行考核,政府直接购买合格的数据。这一模式将数据质量推向了市场,按照市场优胜劣汰的法则,具有竞争力,可以提供可靠的、准确的、真实的数据的运营商才有资格对环境空气监测站点进行运营。
那么哪些公司拥有运营管理的资格呢?各运营公司须按照环境保护部下发的《环境空气质量自动监测技术规范》、山东省环保厅《山东省环境空气质量自动监测“转让——经营”模式质量管理体系技术规定》等技术规范和要求,完成环境空气自动监测质量保证实验室和系统支持实验室建设工作,通过山东省环境信息与监控中心组织的验收,并取得资质认定计量认证(CMA)证书才能够进行运营管理。
除了战略上的转变外,青岛市环境监测中心站还加强了制度建设。环境监测中心站制定了《空气自动监测运营管理考核细则》(以下简称《考核细则》),细化了对运营公司的监督和管理,比如规定环境监测站应当加强巡检督查和现场比对监测,严格对运营单位进行管理与考核,发现运营单位工作质量达不到要求的,按照《考核细则》予以扣分,并通知相关区市环保局扣除运营单位相应的运营费用,并且要求各区市环保局协助市环境监测中心站对运营单位进行监督和考核。
《考核细则》对运营单位也提出了要求,运营单位要建立健全设备校准、维护、故障维修和日常巡检等制度规程,保证空气自动监测设备稳定运行,监测数据准确有效。
据了解,《考核细则》实施以来,参与青岛环境空气质量自动监测站运营的单位严格按照规范和要求,认真做好运营维护工作,保证了空气自动监测数据的准确性。
杜绝人为干扰 确保监测数据的真实性
目前,数据失真主要由人为导致。山东省环境信息与监控中心污染源监控室副主任石敬华介绍说,通过干扰自动监测设备正常运行,对数据造假的方式主要有两大类,一类是通过修改设备工作参数等软件手段造假,“比如说实际监测的排放浓度是1000毫克每立方米,在软件计算时加了个0.1的系数,结果就成了100毫克每立方米,不达标的就变成达标了”。另一类是通过破坏采样系统等硬件手段造假,“比如在设备采样管上私接稀释装置等”。
那么,青岛市环保局如何避免人为干扰设备?为更好地适应当前大气污染防治工作需要,进一步提高监测数据质量,强化区市环境空气质量考核,青岛市环保局在2月底下发了《加强环境空气自动监测站运行管理的通知》,严格要求各区市环保局不得以任何方式人为干扰空气自动监测设备正常运行。在未征得市环境监测中心站同意的情况下,不得擅自进入空气自动监测站房,不得擅自调整或要求运营单位违规调整监测设备参数。同时,要求运营单位加强教育培训和监督管理运营人员,保证其严格按照空气自动监测运营管理制度和规程开展工作,杜绝弄虚作假行为,确保监测数据客观、真实和公正。
市环境监测中心站则是整个过程的监督者和管理者。整个过程,环境监测中心站采取远程视频监控、飞行检查、组织异地交叉检查等方式,对各区市空气自动监测工作进行质量控制,确保监测数据质量。一旦发现违规干扰自动监测设备正常运行的,对相关监测数据不予确认,并在考核中予以扣分,并对有关责任人予以通报批评,追究责任。若发现运营单位工作中存在弄虚作假行为的,直接终止运营合同。
青岛市环境监测中心站的相关负责人说:“从近期的运行情况来看,全市23个环境空气质量自动监测站的运行和管理还是不错的,有了严格的规范和考核要求,更加理顺了环保部门和运营公司的关系。”

---------------------------------
如何确保测试数据的真实性
提升常态课堂质效离不开“数据”,一串数据胜过一打纲领。彼得.德鲁克说:“精妙地运用统计学方法来解释纷繁复杂的数据,找出数据背后隐藏的规律和秘密的艺术是很重要的事业。”恰如一句话:“心中有数据,方能运筹帷幄,决胜千里;心中无数据,必定差之毫厘,缪之千里。”用数据说话是教育者做出正确决策的前提与基础。用数据说话是教育者改进教学方式和转变教学理念的前提与基础。用数据说话是教育者规范自己的教育教学行为和提升教育教学质效的根本保证。课堂精细化管理离不开真实性数据支持,准确数据的获得并非轻而易举,获取准确数据路径和能力是根本。一方面提高收集数据,描述统计的能力。能迅速将所收集到的大量数据进行归类,并用表格或图形表示出来,通过计算,把握所得数据的“集中量数、差异量数和相关系数”等特征数据,描述影响教育教学质效各要素的典型性、波动性和关联性和内在性。另一方面,提高推断统计的能力。利用数据进行统计检验、统计分析和非参数统计,作出科学决策。
第一、试场地器材的真实性
测试场地和器材必须符合测试具体项目国家规定的标准,否则,所测试的数据一定存在着误差,从而导致上报数据的失真。比如,初中男女生50米测试项目,需要提供符合国家场地标准化的跑道数量、跑道宽度和跑道长度等精确的条件,决不能人为的缩短50米跑距来组织学生测试,或让学生站立在50米起点线前几米处来组织学生测试等弄虚作假行为呈现,这样不仅欺骗国家、家长、孩子,还欺骗了自己的职业情操,更彻头彻尾的玷污了教师这个称谓。
第二、试对象身份信息的真实性
测试对象身份的真实性同样决定着抽测结果的真实性。最科学的就是以一个年级为抽测样本,现场开放式的随机抽取一、二个班级学生作为抽测对象进行统一编排、安排测试顺序、随机抽取测试项目,随机抽取测试工作人员,然后进行现场测试,并把测试结果现场公布。决不能人为的把本年级里精华学生抽取出来参加测试,或让高一级学生冒名顶替来应付测试,这种弄虚作假的作派,不能解决广大青少年学生体质下降的事实,更不能掩盖各级各类教育管理机构领导的失责,更可悲的是,我们这样的弄虚作假行为教坏、教歪一批批本性纯真的学生,使得一代代国民素质越来越低下,最终毁国败家。
第三、试组织人员的真实性
如果各级各类教育管理机构领导人都抱着虚假应付一下国家抽查的理念,就会暗示负责抽查的本单位部门领导人,下面就会心领神会的执行,无疑从上到下都会这样敷衍、搪塞虚假下去。当然,测试对象、测试工作人员都是半真半假,所得的测试数据自然也是达到国家标准。
第四、试过程的真实性
测试过程真实,就会收获真实测试结果。实心球测试过程真实,就得保证实心球的重量符合标准、测试场地符合标准、测试人员丈量方式要规范、测试人员对抽测学生要一个评价标准,这样的测试数据才能真实可信。仰卧起坐计数人员、评判学生测试技术动作是否标准要统一;1000米、800米要跑实距、计出实时来,包括其他引体向上、立定跳远等测试项目都应该规范、严格、认真操作,从源头上确保测试的项目数据的真实性。
第五、测试数据采集的真实性
美国心理学家和教育家通过观察同样处于中等发展水平的学生(50%)遇到不同水平教师的发展结果后,得出如下结论:如果遇到优秀教师,他们可以达到优秀(平均90%),遇到平庸教师则降到较差(平均37%)。以上的信息得到,就是数据有“真实”最好呈现。只有每一个测试过程都是真实的,才能保证采集的数据是靠谱的,否则仅能欺上瞒下了。
第六、数据上报的真实性
作为学校最下层,应该保真的把每一个年级学生的身体素质测试结果数据,毫无失真的上报到国家体质健康网平台,决不能人为的修修改改去黑贱自己。倘若你、我真有这么在意,就应该踏踏实实、扎扎实实、切切实实、确确实实、真真实实去上好每一天、每一节常态体育课,认真负责爱岗敬业,相信,随着时间的推移,你、我所教的每一届学生一定能够收获运动技能和运动体能双丰收,同时,你、我这种职业道德一定能赢得学生、家长的肯定,更对得起“教师”这个神圣称呼。

⑺ 如何深化统计管理体制改革提高数据真实性

统计数据是经济社会发展的晴雨表,统计数据质量是统计工作的生命。统计数据质量从使用的要求上看,取决于准确性、及时性和完整性。准确性是统计数据质量在统计信息客观真实性方面的体现,是统计数据使用者的首要要求。及时性是统计数据质量在统计信息的时间价值上的体现,是对统计数据形成和提供的高速度、快节奏、强效率的要求。完整性是统计数据在统计信息的内容含量上的体现,就是要求统计部门提供的统计数据在内容上应该包括使用者所需的所有项目,不能残缺不全。随着我国社会主义市场经济体系的建立和完善,经济领域呈现经济利益多元化、经济格局多样化、经济统计现化化的趋势,统计工作面临的困难和挑战越来越大。县(市、区)统计工作如何适应新形势的要求,发挥统计在经济社会发展中的作用,确保统计数据可信可靠。笔者认为要抓好以下几方面的工作:
一、优化统计环境强化统计生态
统计生态是指统计组织赖以生存和发展的各种外部政治、体制、经济、法律、社会、文化环境因素在相互联系和动态演化中形成的有机整体。在恶劣的统计生态环境下,不可能有准确的统计数据,也不可能树立统计的公信力。我们需要一个共建、共有、共保、共享的统计生态链,这是一项系统工程,需要社会各方共同努力。
第一要完善《统计法》。加强统计法制建设,提高法律的可操作性,加大执法力度,市场经济就是法制经济,我们一定要做到有法必依、执法必严、违法必究,保障统计生态环境的健康发展。统计机构必须是依照法律独立设置的,并且统计机构在行政上应保持其独立的地位。要健全统计法制建设,依法统计,尤其要严格执法。强有力的法律实施机制将使得违法成本极高,从而真正杜绝虚报、瞒报、伪造、篡改统计资料,阻挠统计执法检查等统计违法行为的发生。三是要加大普法力度,广泛宣传《统计法》,增强社会各界的统计法制观念,只有这样才能依法统计,保证统计工作的顺利进行和统计数据的客观真实性。大力加强统计法制建设,提高依法行政水平。要与人大、政协、监察局、法制、司法等部门联合开展执法大检查,对违法案件进行处罚和曝光,增强各级领导和广大统计员的统计法律意识,统计数据质量得到较大提高。
第二进一步完善各级统计部门机关管理制度。用制度管人管事,奖优罚劣,精神和物质鼓励相结合;强力推进学习型统计局建设,深入开展“三个代表”、“保持共产党员先进性学教活动”和机关作风建设,在统计系统上下形成讲政治、讲大局、讲团结、比学习、比作风、比进步的良好风尚;加强领导班子决策能力建设,按照“三强五好”的要求切实加强领导班子建设和党风廉政建设;狠抓统计职业道德教育,忠诚统计、爱岗敬业、恪尽职守、无私奉献,争创一流工作业绩。五是抓办公条件的改善,为干部职工营造良好的工作环境。配备电脑,使办公条件大为改善,工作效率显着提高。
第三进一步理顺统计管理体制,增强统计系统凝聚力。更好地体现整体性特点,发挥统计整体功能。为此,必须坚持行政管理与业务管理一致的原则,一方面在统计机构和制度上,提高独立性和抗干扰能力,另一方面要建立约束机制,减少各方面的干预。这是科学管理的工作要求决定的,这样有利于贯彻责权利的统一。
第四进一步增强县(市)级统计局的力量。按照统计工作的流程对各级各类统计机构设置合理的内部机构进行系统优化。把统计局建设成为符合未来形势发展要求的,灵敏、快速、高效、精干的调查机构,提高效率,并使之适合网络时代的特点。各县(市)可按照普查制度规定成立适应普查任务要求的普查机构,专司各项普查工作。
第五切实树立统计大系统的观念.
各级统计部门的领导要多为基层着想,为基层办实事、解难事。在开展普查时,要贯彻受益者出钱的原则,按照受益大小分担经费,使基层统计局的领导从为上级要经费的尴尬局面中解脱出来。上级统计部门要切实为基层统计干部在待遇上排忧解难。一是争取提高统计人员待遇上的有关政策,二是对经济贫困县(市)统计部门实行经济扶贫,增加经济投入,解决统计人员经济待遇差的问题,确保统计干部队伍稳定。
第六改革完善考核评价体系。现行的考核评价体系很大程度是以统计数据为主要考核依据。考核是对一个地方经济社会发展的评价,也是领导政绩的体现。考核作为指挥棒,具有很强的引导性。近年来,各级各类的工作考核,在某种程度上发挥了一定的作用,但也存在不少问题:一是互相攀比,二是数据失真,三是围绕考核想尽“办法”拿名次。如果这些问题不能很好地解决,就会造成“聪明人”得益、老实人吃亏,从而挫伤大部人的积极性。因此,要逐步淡化考核工作或建立一种科学合理、客观公正的考核体系,以引导各级领导树立正确的政绩观,使统计数据不受包括政府在内的各方干扰,推进各项工作的顺利开展。
二、改善统计方法 提高统计质量
提供高质量统计数据是统计工作的中心任务和根本职责,是统计事业改革和建设的出发点和归宿点,亦是新时期和新形势对统计工作的基本要求。1、树立新的统计数据质量观理念。提高统计数据质量是统计工作的一个永恒的主题。但是在不同时期对统计数据质量有不同的标准,明确新时期统计数据质量的涵义和概念,树立全新的统计数据质量理念,是指导我们做好工作的前提和基础。因此,对数据质量评估判断标准的思维须从狭义转向广义,要从过去的只重视搜集生产转为生产和营销并重的观念。要从过去单纯注重提高数据准确性和及时性,扩展到提高数据的时效性、科学性多维的质量内涵,要从过去工作重点是收集上报搞准统计数据的工作思维中解脱出来,既要抓数据的准确性,
又要做好解读统计数据,
开发统计分析研究成果。逐渐把满足用户需求的程度作为评价数据质量的标准。以新理念来确立新思路,制定新措施,开拓新局面。2、改革统计制度及方法。当前统计制度存在着调查方法单一、对全面报表的依赖仍然过多、指标体系不尽合理、任务繁重以及完成任务的条件脱节等问题,要解决这些问题就必须加快统计制度及调查方法的改革。首先,必须明确应收集哪些资料,官方统计机构的职能除了将这些数据收集、整理及出版外,还要对这些数据进行进一步的统计分析,或将数据分析工作交给社会研究机构,这些都必须以一定的制度形式予以规定。其次,建立一套更加完善的国民经济核算体系及适应经济增长方式转变的统计指标体系,并且保证经确定的统计指标体系的全国统一和相对稳定,对指标的含义、统计口径、计算方法都必须做出说明和界定范围,同一指标不能有两种口径和随意变更,这些也都必须以制度形式予以规定。一方面,这样可以保证数据在时间上的可比性,使它能更好地反映现象发展的数量特征;另一方面,有利于使用者根据指标的说明和按研究的需要对数据进行调整和分析,增强数据的适用性。此外应建立从实际出发的科学适用的统计调查方法体系,适当减少全面统计报表,推广抽样调查,注重效益、节省成本,提高时效,减少被调查者的负担。3、建立完整规范的统计数据质量控制体系和统计数据质量监控评估中心。统计数据质量的监控与评估是一项复杂的、长期的系统工程,可在政府统计部门内建立权威的数据质量监控和评估中心,建立健全完善的统计数据产品质量管理体系,对统计数据生产全过程实行全面质量管理,提高统计数据的完整性和透明度。最近国家统计部门建立了自我检查和评估制度,对国内生产总值、工业增加值、价格指数、社会消费品零售总额等主要的统计指标数据质量实行定期评估,它对于减少统计数据的误差,提高统计数据的质量有着积极的作用。实际上,统计数据的监控与评估可以采用自我评估、监督评估与定性评估、定量评估相结合的方法。4、加强统计基础建设工作,提高统计人员素质。统计基础工作是整个统计工作的基石,要提高统计数据质量就必须加强基层统计组织的建设。一是狠抓基层统计机构的设立,统计人员的配备工作;二是加强对基层统计基础工作的业务指导和统计人员的业务培训,统计人员业务素质不断提高;三是抓基层基础规范化建设工作,针对部分乡镇统计力量薄弱,工作条件差,有些部门统计、行业统计工作削弱、人员精减、统计人员兼数职、统计台帐、原始记录不全的状况,必须采取多种有力措施,强化统计基础工作;软硬并举,统计信息化工作再上新台阶,争取领导重视,充实统计信息化的硬件设施;统计信息化水平得到提升,使乡镇单位实现了联网直报。
一方面,要加大资金投入,解决经费问题和改善基层统计组织的工作条件,提高先进统计设施在基层统计部门中的普及率和应用率。可以考虑建立部分数据的有偿使用机制,帮助筹措更多的资金来更好地收集数据,以维持统计基层部门工作的正常进行
?帮助统计机构建立激励机制,以奖励那些对数据的搜集做出突出贡献的人员。另一方面,要着手培养和提高基层工作人员的素质,采取定期培训或考核的
办法不断提高基层工作人员的业务素质,使他们熟练掌握统计新知识、新方法,特别是现代统计调查、统计整理、统计分析技能和计算机应用技术,并做到培训教育经常化、制度化、规范化,不断提高统计人员的业务水平。同时,加强统计职业道德建设,树立行业职业道德的优秀典型,弘扬务实求真、忠于职守的精神。

⑻ 如何有效的进行数据治理和数据管控

大数据时代的到来,让政府、企业看到了数据资产的价值,并快速开始 探索 应用场景和商业模式、建设技术平台。但是,如果在大数据拼图中遗忘了数据治理,那么做再多的业务和技术投入也是徒劳的,因为很经典的一句话:Garbage in Garbage out。

当你处理或使用过大量数据,那么对“数据治理”这个词你一定不会陌生。你会思考数据治理是什么?数据治理是否适合你?如何实施。简单来说,数据治理就是处理数据的策略——如何收集、验证、存储、访问、保护和使用数据。数据治理也还包括谁来查看,使用,共享你的数据。

随着大数据时代的推进,以上这些问题日益突出,越来越多的企业依赖采集、治理、储存和分析数据,并实现他们的商业目标。数据变成了企业的盈利工具、业务媒介和商业机密。数据泄露会导致法律纠纷,还会令消费者对公司的核心业务失去信心。

如果抱着侥幸的心理,让各个业务部门自己管理数据,那么你会缺乏有效的数据管理,甚至各部门会自己做自己的。你无法想象各个部门按随心所欲地自己生产、储存、销售产品。数据使用不当就像库存使用不当一样,会给企业造成沉重的损失。因此必须制定一项测量用以保证所需数据的有效和安全,可用性,这就是我们要谈的“数据治理”。

数据治理策略必须包含完整的数据生命周期。策略必须包含从数据采集、清洗到管理,在这个生命周期内,数据治理必须要有关注以下内容:

数据从哪里来,数据怎么来

这是数据生命周期的起点。数据来源决定了数据治理策略的基础。例如数据集的大小就由数据来源所决定。是从目标市场、现存用户和社交媒体收集数据?还是使用第三方收集数据或者分析你收集的数据?输入数据流是什么?数据治理必须关注这些问题,并制定策略来管理数据的采集,引导第三方处理他们收集的数据或者分析你收集的数据,控制数据的路径和生命周期。

数据校验

通常数据源都是非常庞大且多样的,这是一个让数据管理者非常头疼的问题。将数据噪音和重要数据进行区分仅仅只是开始,如果你正从关联公司收集数据,你必须确保数据是可靠的,对于那些几万、几十万、甚至成百上千万的复杂关系数据,单靠人为的通过Excel对进行数据清洗已经不太现实,需要专业的数据清洗工具或系统对海量复杂关系数据进行批量查询、替换、纠正、丰富以及存储。将元数据、主数据、交易数据、参考数据以及数据标准内置固化到数据清洗工具或系统中,结合组织架构、内容管控、过程管控等管理机制、技术标准提高数据治理人员的工作效率。比如:需要手工编写程序收集的元数据,系统帮你自动获取;需要人工识别或编写代码实现的数据质量检查,系统帮你自动识别问题;用文档管理的数据字典,系统帮你在线管理;基于邮件和线下的流程,系统帮你线上自动化。当然,系统并不是万能的,数据治理的软件工具与其他软件工具一样,没有什么神奇之处,没有数据治理人员的参与和数据治理工作的推进,软件再完美也无法完成数据治理整个过程。这也是为什么数据治理咨询服务一直有其市场,以及为什么国内大部分单纯数据治理软件项目未能达到预期目标。

数据治理必须解决存储问题

而数据存储和数据集的大小有密切关系。大数据的存储必须是在安全的冗余系统之中。常常利用层次体系,根据使用频率来存储数据。这样一来,昂贵的在线系统提供的是被频繁请求的数据,而请求频率较低的数据则存储在便宜,可用率较低的系统上。当然,一些请求频率低但是敏感的数据如果存储于安全性较低的系统上,风险会大大提升。因此,在制定数据存储方案时,良好的数据治理策略必须考虑到方方面面的因素。

数据治理必须建立访问管理制度,在需求和安全性找到平衡点

明确访问者的权限,只能访问他们对应权限包含的数据。只有合法请求才能够访问数据,而敏感的数据需要更高的权限和更严密的验证才可以被访问。只向具有特定安全级别的用户开放。应该对用户和数据本身设置访问级别,管理账户时,应与人力资源部和采购部紧密互动,这一点非常重要,因为这样可以及时地使离职员工和停止合作的供应商不再拥有访问权限。处理好这些细节以及确保数据所有权和责任,这是构成完整的数据治理策略的一部分。

数据的使用/共享/分析

如何使用数据是数据治理之后一项重要的内容,数据可能会用于客户管理,提高客户体验,投放定向广告,用户应用系统初始化基础数据工作,辅助应用系统建设,提供市场分析和关联公司共享数据。必须仔细界定哪些数据可用于共享或者用于营销,并保护它们免遭攻击和泄露,因为数据本来就应该被用于纯粹的内部用途。让用户知悉采集数据的所有公司都会遵守数据安全和保证的规定。能够确保数据被合理合规的使用,也是数据治理重要的一项内容。

收集、验证、存储、访问和使用都是数据安全计划的必要组成部分

收集、验证、存储、访问和使用都是数据安全计划的必要组成部分,必须要有一个全面的策略来解决这些问题以及其他安全问题。数据安全计划必须是有效且可用性高,但是数据生命周期的所有部分都很容易受到攻击和由于粗心造成的破坏。你必须在数据治理中确定数据安全计划,包括访问控制,静态数据,数据加工,数据传输之后的加密等。

管理/元数据

没有管理的数据生命周期是不完整的。例如,将元数据应用于一段数据,用来进行识别检索。元数据包含数据的来源,采集或生成的日期,信息访问的级别,语义分类及其他企业所必须的信息。数据治理能建立一个元数据词汇表,界定数据的有效期。请注意数据也会过期,过期之后我们只能用于 历史 数据的分析。

数据治理创建的过程中可能会在企业内部遭到一些阻力,比如有的人会害怕失去访问数据的权限,而有些人也不愿意和竞争者共享数据。数据治理政策需要解决上述问题,让各方面的人都可接受。习惯了数据筒仓环境的公司,在适应新的数据治理策略上面会有困难,但如今对大型数据集的依赖以及随之而来的诸多安全问题,使创建和实施覆盖全公司的数据策略成为一种必然。

数据日益成为企业基础设施的一部分,在企业一步步处理各种特定情况的过程中形成决策。它以一次性的方式作出,常常是对某一特定问题的回应。因此,企业处理数据的方法会因为不同部门而改变,甚至会因为部门内部的不同情况而改变。即使每个部门已经有一套合理的数据处理方案,但这些方案可能彼此冲突,企业将不得不想办法协调。弄清数据存储的要求和需求是一件难事,如果做得不好,就无法发挥数据在营销和客户维系方面的潜力,而如果发生数据泄露,你还要承担法律责任。

另外在大企业内部,部门之间会展开对数据资源的争夺,各部门只关注自身的业务情况,缺乏全局观念,很难在没有调解的情况下达成妥协。

因此公司需要一个类似数据治理委员会的机构,他的职责是执行现有数据策略、挖掘未被满足的需求以及潜在安全问题等,创建数据治理策略,使数据的采集、管护、储存、访问以及使用策略均实现标准化,同时还会考虑各个部门和岗位的不同需求。平衡不同部门之间存在冲突的需求,在安全性与访问需求之间进行协调,确保最高效、最安全的数据管理策略。

建立数据治理委员会

负责评估各个数据用户的需求,建立覆盖全公司的数据管理策略,满足内部用户、外部用户甚至法律方面的各种需求。该委员会的成员应该囊括各个业务领域的利益相关者,确保各方需求都得到较好地满足,所有类型的数据所有权均得到体现。委员会也需要有数据安全专家,数据安全也是重要的一环。了解数据治理委员会的目标是什么,这一点很重要,因此,应该思考企业需要数据治理策略的原因,并清楚地加以说明。

制定数据治理的框架

这个框架要将企业内部、外部、甚至是法律层面的数据需求都纳入其中。框架内的各个部分要能够融合成一个整体,满足收集、清洗、存储、检索和安全要求。为此,企业必须清楚说明其端到端数据策略,以便设计一个能够满足所有需求和必要操作的框架。

有计划地把各个部分结合起来,彼此支持,这有很多好处,比如在高度安全的环境中执行检索要求。合规性也需要专门的设计,成为框架的一部分,这样就可以追踪和报告监管问题。这个框架还包括日常记录和其他安全措施,能够对攻击发出早期预警。在使用数据前,对其进行验证,这也是框架的一部分。数据治理委员会应该了解框架的每个部分,明确其用途,以及它如何在数据的整个生命周期中发挥作用。

数据测试策略

通常一个数据策略需要在小规模的商用环境中进行测试,用来发现数据策略在框架,结构和计划上的不足之处并进行调整,之后才能够投入正式使用。

数据治理策略要与时俱进

随着数据治理策略延伸到新的业务领域,肯定需要对策略进行调整。而且,随着技术的发展,数据策略也应该发展,与安全角势、数据分析方法以及数据管理工具等保持同步。

明确什么是成功的数据策略

我们需要确立衡量数据治理是否成功的明确标准,以便衡量进展。制定数据管理目标,有助于确定成功的重要指标,进而确保数据治理策略的方向是符合企业需求。

无论企业大小,在使用数据上都面临相似的数据挑战。企业越大,数据越多,而数据越多,越发需要制定一个有效的,正式的数据治理策略。规模较小的企业也许只需要非正式的数据治理策略就足够了,但这只限于那些规模很小且对数据依赖度很低的公司。即便是非正式的数据治理计划也需要尽可能考虑数据用户和员工数据的采集、验证、访问、存储。

当企业规模扩大,数据需求跨越多个部门时,当数据系统和数据集太大,难以驾驭时,当业务发展需要企业级的策略时,或者当法律或监管提出需求时,就必须制定更为正式的数据治理策略。

阅读全文

与组织管理中如何保证数据的真实性相关的资料

热点内容
手机微信博云学小程序怎么登录 浏览:791
口罩出口信息怎么看 浏览:858
产品防伪数码是什么意思啊 浏览:159
市场营销有哪些应用 浏览:315
花喜代理怎么加盟 浏览:38
信息管理人员经历了哪些阶段 浏览:967
仁化汽车配件代理加盟如何 浏览:1000
之江生物产品销量怎么样 浏览:670
宇花灵技术怎么用 浏览:600
想去泉州卖菜哪个菜市场人流大 浏览:411
沈阳雪花酒水怎么代理 浏览:125
rng秘密交易是什么意思 浏览:732
重庆红糖锅盔怎么代理赚钱吗 浏览:383
考察投资项目关注哪些数据 浏览:592
家纺家具都有什么产品 浏览:37
丘氏冰棒产品有哪些 浏览:414
程序员如何拉到业务 浏览:177
揭阳火车站到炮台市场怎么走 浏览:843
二线国企程序员怎么提升技能 浏览:154
蓝翔技术学院西点多少钱 浏览:787