导航:首页 > 数据处理 > 大数据伦理属于下列哪个范畴

大数据伦理属于下列哪个范畴

发布时间:2023-04-30 14:53:05

Ⅰ 伦理学属于哲学范畴吗

伦理蠢羡扰学属于哲学范畴:
伦理学的本质是关于道德问题的科学,是带旦道德思想观点的系统化、理论化。
或者说,伦理学是以人类的道德问题作为自己的研究对象。
伦理学要解决的问题既多又复杂,但伦理学的基本问题只有一派春个,即道德和利益的关系问题,即“义”与“利”的关系问题。

大数据伦理的概念

大数据伦理化管理:重获控制权

随着大数据技术的发展,各类算法对数据流加以运用,并在个人抉择过程中发挥着越来越决定性的作用。就则拦此断言我们已为这些算法所操纵,这未免太过危言耸听。

可这些算法确实也在左右我们的众多抉择,无论是选择酒店、机票乃至出行路线,还是挑选在线图书,亦或是通过社交网络结交朋友。

除了利于我们做抉择,促成我们做抉择,这些算法还以其特有的方式参与着社会生活的构建。这种算法“力量”正悄然显现,它主要依托于原始数据。这样的力量具有前所未有的能力,可触及人们生活最私密的角落。即便是广布密探与耳目的极权政权,也未敢奢正盯芦想掌握这种权力。

通过大规模的数据运用,个性化资讯才得以生成。在对可能性进行预测的基础上,这些资讯“有利于”我们的选择行为——这种论调多少有些囫囵不清。一些机构与我们存在数据关联,它们对我们的选择行为感兴趣,并试图预测、引导我们的选择。

这些算法掌握并影响着我们的选择,我们对其所依据标准却几乎无从掌控、无从知晓。

如何重获控制权呢?有一种思路颇具意味,那就是设计并建立某种模式,以适于分析、理解并处理这些海量的复杂数举带据,亦即一种伦理化模式。

Ⅲ 大数据伦理化管理:重获控制权

大数据伦理化管理:重获控制权

随着大数据技术的发展,各类算法对数据流加以运用,并在个人抉择过程中发挥着越来越决定性的作用。就此断言我们已为这些算法所操纵,这未免太过危言耸听。可这些算法确实也在左右我们的众多抉择,无论是选择酒店、机票乃至出行路线,还是挑选在线图书,亦或是通过社交网络结交朋友。

除了利于我们做抉择,促成我们做抉择,这些算法还以其特有的方式参与着社会生活的构建。这种算法“力量”正悄然显现,它主要依托于原始数据。这样的力量具有前所未有的能力,可触及人们生活最私密的角落。即便是广布密探与耳目的极权政权,也未敢奢想掌握这种权力。

通过大规模的数据运用,个性化资讯才得以生成。在对可能性进行预测的基础上,这些资讯“有利于”我们的选择行为——这种论调多少有些囫囵不清。一些机构与我们存在数据关联,它们对我们的选择行为感兴趣,并试图预测、引导我们的选择。这些算法掌握并影响着我们的选择,我们对其所依据标准却几乎无从掌控、无从知晓。

如何重获控制权呢?有一种思路颇具意味,那就是设计并建立某种模式,以适于分析、理解并处理这些海量的复杂数据,亦即一种伦理化模式。

数据伦理化的前提:算法原理

在此我们需要予以澄清。这不是要抑制大数据的蓬勃发展,而是使我们的生活尽量不受制于盲目理性,也不单纯地屈从于市场的客观需要。问题的核心也不在于构建某种两全模式,得以既合乎常情,又顺应大数据的巨大潜力。

不过,鉴于数据挖掘的原理,构建针对复杂数据的伦理化模式是完全可行的。这是因为,作为大数据核心的归纳算法,其所依赖的逻辑与作为伦理道德核心的“实践智慧”竟然是惊人地相似。

在日常生活中,人类收集数据,阐释信息,与记忆中的知识建立联系,并掌握在日后可被反复运用的种种能力。由此,人类获得了一种“实践智慧”,亦即行为的艺术;同样在“伦理道德”中,这种所谓的“实践智慧”也可以得以形成并完善。

数据挖掘算法所依赖的逻辑与人类日常行为所反映的逻辑,两者十分接近。它们都属于归纳式、而非演绎式的逻辑。大数据算法的设计初衷不在于推理论证,并获得无可争辩的结论;它不是数学运算。运行这种算法所依据的局部、不完全且尚未结构化的数据,并不足以支撑论证过程。这种算法其实是对重复性动作的辨认,对行为线索、行为模式的识别。例如,在亚马逊网,它们会发现某类图书的读者很可能对另一类图书也感兴趣。这些算法收集数据,将数据聚合为信息,对信息加以阐释,并与记忆中的知识建立联系,由此提供精简过的选择范围,而这些选择又导向实用结果。

无论就人类行为而言,还是就数据算法而言,关键的节点都在于“化简”,即将复杂的原始数据转化为实用信息的过程。在上述亚马逊的例子中,这意味着不去向科幻小说的爱好者推荐人类学着作。在这个关键的化简环节,复杂数据的伦理化模型应试图去维护并开发这种辨识力。

在此,我们要遵循两条必要的原则。首先,所谓“信息”通过某种系统性框架与行动相联系。信息聚合为知识,这种知识又是一种实践性知识,在行动中得以确认。与其说它是知识,不如说它是对知识的实践。

第二条原则直接来自于信息科学理论。相较之数据处理,毋宁说数据状态描述。大数据伦理的关键也在于将紊乱且含混的复杂知识转化为结构性的简单知识,并导向某种最终实践。

数据伦理化的关键:数据分级

数据化简的决定性环节就是数据分级。数据分级可以“调控”算法,让其制造可用结果。数据分级要求事先对数据价值进行考量,这通过一系列的设问完成:为何评估,出于什么样的目的和目标?如何对某项数据或某条信息的价值进行评估,依据什么样的标准?确切地说,我们到底应该评估什么?

我们可以从某项数据的具体内容来评估其价值:比如,点击一次表示有人喜欢,有人朝某个方向前进或返回,或有人打算支付。我们还可以从冗余度、差异性和数量角度对某项数据的价值进行评估。数据的价值也取决于知识整体:某些数据对认知贡献较少,而另一些数据则对认知意义更大。最后,我们可以在数据分享的层面,也就是从数据交换的质与量对数据的价值进行评估。

数据的价值还与它为用户所提供的服务有关。对信息的评估就是确定信息的传播策略,即在适当的时机提供适当的信息,根据客户的兴趣与需求有选择性地推送信息,从而杜绝误导性信息和信息泛滥。

因此,系统设计者必须要确定,向用户提供什么数据、提供多少信息。用户需要哪些数据,才可以“良好地”决策,并“良好地”行动呢?为了在信息系统内部实现数据改进与数据过量之间的均衡,两种变量可以对数据分级和数据拣选功能实行优化。

第一种是指对所有层级数据进行的反复评估,但这种再评估太过频繁的话,来回传输所引起的数据过载,就会抵消再评估所带来的好处。第二种是指最小存储单位所包含、管理和等待移动的数据量,量过大也会导致分级变得复杂且缓慢。

这种对数据加以分级并评估的工作至关重要。伦理的因素也是在这个环节被引入。接下来我们研究一个颇为敏感的实例:医疗数据。

伦理化分析的实例:医疗数据

医疗数据可谓是两方面利益的边界:作为病患隐私,医疗数据应当得到保护;作为流行病统计资料,医疗数据又对全人类有用。如何弄清这两种因素呢?在四点原则基础上,我们可以建立一套伦理化的方法。在其相关着作《生物医学伦理原则》中,Tom Beauchamp和James Childress确立了这四点原则。

第一,善意性原则,也就是对他人福利的贡献。善意性行为要符合两点具体规定,即善意性行为一要有益,二要有用,表现为正成本效益。第二,自主性原则,也就是每个人为自己设定行为准则。根据这条原则,病患必须参与到决策过程中。第三,非恶意性原则,也就是说,针对那些我们理应对其履职尽责的人,避免对其行恶,避免使其遭受无谓的损害与痛苦。第四,公正性原则,也就是说,全体病患分享可用资源(时间、金钱、能源)。这条原则又与平等、公平的概念紧密相联,平等与公平牵涉公正性决策的过程。理想的状态是,任何行为都应趋向完全平等,但根据不同状况与个人,公平通常是为确立行动的某种优先次序或等级而被强调。

设计良好的医疗数据拣选过程可满足上述四点伦理化原则的三条。

善意性原则体现为,向用户(医务工作者与民众)发布信息要适度,确保行为的恰当性与合理性。传播变得更高效。

自主性原则体现为,信息要清晰、准确、适当且容易理解,获得当事人的明确同意。病患有参与商议、决策且行动的权利。

非恶意性原则体现为,依据用户身份与性质对数据权限设限,提高数据安全性、保密性和数据保护。

这种选择性数据手段之于公正性原则,却存在反作用。针对不同用户,信息发送也不尽相同。系统为每个人设置特定的信息分配与信息获取规则。这样的信息不对称属于歧视性做法,对信息透明度也提出挑战。

依据数据被赋予的重要性,以及数据运用和发布所牵涉的问题,数据分级与数据拣选得以实现。通过对所发送的数据进行简化,数据的使用与访问变得更奏效,数据采集与数据安全也获得改善。不过,这种方法却造成较差的数据完整性。所以说,数据分级使各类用户的工作更轻松,却使信息系统设计者面临更大的技术挑战。

这种选择性数据分级在数据复杂度与可访问度两方面均发挥着重要作用。我们可视其为一种“组织性智能”。依据伦理化数据挖掘原则所构建的那些算法,其所生成的新信息,我们可称其为“伦理化信息”。经过伦理化评估预处理的信息,在其日后的运用中蕴含更大价值。

伦理在何时改进数据质量

这种方法对初始数据先分级再拣选,以数据和信息的量化损失为代价,却可改善知识的定性价值与熵值。同时,数据的自动选择性分级系统通过偏低的存储占用,根据用户的不同需求,自动地向对应的服务层级转移数据。

关于大数据技术核心即归纳算法所展开的相关工作,使上述方法被极好地予以阐释。唯一且放之四海皆准的归纳式解决方案并不存在。尽管如此,针对具体目的,可选方案的范围也会相对明确。恰如伦理化进程,表现最突出的归纳算法应该是不断演化的。依照最适宜的可行方案,这些算法调整其处理数据的方式,进而实现自我完善。为了构建这样的算法,数据处理必须具有预见性,且可发挥作用。为此,运用大数据,必须及早将数据转换为可用的伦理化信息。

在这样的大背景下,从伦理的视角,对选择性分级方案进行研究,有助于我们更好地理解数据可用性、数据保密性以及数据保护之间的不稳定均衡。根据特定情况,这种均衡时而会倒向这边,时而又倒向那边。数据拣选之前,这样的方法往往会向我们抛出一系列问题:这么做的目标、目的、关键、意义分别是什么?我要使用哪些数据?局部数据还是全部数据?我要如何使用这些数据?在哪?对哪些用户?更为宏观地讲,如何运用信息系统内所累积和存储的混杂数据?这种数据整体与我处境的相关性为何?这会不会造成原始信息价值的歪曲?最终信息的完整性可否得以保留?

技术解决不了所有问题。对个人信息及其私密性的保护,同时要依赖职业道德的约束与人们行为的自律。这就需要制定相应的道德守则,以规范对大数据中个人数据的设计、实施及运用。这同时又带出新问题:由什么机构或组织负责制定这样的守则,并推进“伦理化”算法的认证进程?

以上是小编为大家分享的关于大数据伦理化管理:重获控制权的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅳ 科技伦理属于以下哪个范畴

科技伦理属于应用伦理的范畴。根据查阅相关资料信息,应用伦理是研究拆誉人族穗们在特定应用领域中所遇到的伦理问题,例如医学伦理、环境伦理、科技伦理等。科技伦理是指在科技发展和应用过程中所涉及到的伦理问题,主要包括科技创新的社会责任、科兆御卜技应用的风险评估、隐私保护、知识产权保护等方面的伦理问题。

Ⅳ 数据伦理困境涉及以下哪些方面

数据伦理困境涉及以下三个方面:

1、一是隐私泄露问题

在现代社会,人们几乎无时无刻不暴露在智能设备面前,时时刻刻在产生数据并被记录。如果任由网络平台运营商收集、存储、兜售用户数据,个人隐私将无从谈起。

2、二是信息安全问题

个人所产生的数据包括主动产生的数据和被动留下的数据,其删除权、存储权、使用权、知情权等本属于个人可以自主的权利,但在很多情况下难以保障安全。一些信息技术本身就存在安全漏洞,可能导致数据泄露、伪造、失真等问题,影响信息安全。

3、三是数据鸿沟问题

一部分人能够较好占有并利用大数据资源,而另一部分人则难以占有和利用大数据资源,造成数据鸿沟。数据鸿沟会产生信息红利分配不公问题,加剧群体差异和社会矛盾。

面对数据伦理困境的方式

针对大数据技术引发的伦理问题,确立相应的伦理原则。一是无害性原则,即大数据技术发展应坚持以人为本,服务于人类社会健康发展和人民生活质量提高。

二是权责统一原则,即谁搜集谁负责、谁使用谁负责。三是尊重自主原则,即数据的存储、删除、使用、知情等权利应充分赋予数据产生者。现实生活中,除了遵循这些伦理原则,还应采取必要措施,消除大数据异化引起的伦理风险。

Ⅵ 以下哪些属于数据伦理的问题表现

隐私泄露。在数据伦老山模理的范畴中,隐私为数据伦理研究的核心,所以是具体表现,而数据管理则构成数据伦理的内容,由此出侍缓发,“权利”与“权力”的重构应成为思考或者解决唯源数据伦理问题的路径。

Ⅶ 伦理学属于以下哪个范围

伦理学属于以下哪个范围岩蔽,这道题主要考察租粗的是我们对伦理学范围等相关知弊枣镇识的掌握,伦理学通常运用于日常生活中,伦理学属于实践知识的范围。

Ⅷ 以下哪些属于大数据的伦理问题

1、隐私泄露问题。
2、数据安全问题。
3、数字鸿沟问题。
4、数据独裁问题。大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

Ⅸ 标题大学生如何对待大数据伦理问题

运用大数据技术,能够发现新知识、创造新价值、提升新能力。大数据具有的强大张力,给我们的生产生活和思维方式带来革命性改变。但在大数据热中也需要冷思考,特别是正确认识和应对大数据技术带来的伦理问题,以更好地趋利避害。
大数据技术带来的伦理问题主要包括以下几方面:一是隐私泄露问题。大数据技术具有随时随地保真性记录、永久性保存、还原性画像等强大功能。个人的身份信息、行为信息、位置信息甚至信仰、观念、情感与社交关系等隐私信息,都可能被记录、保存、呈现。在现代社会,人们几乎无时无刻不暴露在智能设备面前,时时刻刻在产生数据并被记录。如果任由网络平台运营商收集、存储、兜售用户数据,个人隐私将无从谈起。二是信息安全问题。个人所产生的数据包括主动产生的数据和被动留下的数据,其删除权、存储权、使用权、知情权等本属于个人可以自主的权利,但在很多情况下难以保障安全。一些信息技术本身就存在安全漏洞,可能导致数据泄露、伪造、失真等问题,影响信息安全。此外,大数据使用的失范与误导,如大数据使用的权责问题、相关信息产品的社会责任问题以及高科技犯罪活动等,也是信息安全问题衍生的伦理问题。三是数据鸿沟问题。一部分人能够较好占有并利用大数据资源,而另一部分人则难以占有和利用大数据资源,造成数据鸿沟。数据鸿沟会产生信息红利分配不公问题,加剧群体差异和社会矛盾。
学术界普遍认为,应针对大数据技术引发的伦理问题,确立相应的伦理原则。一是无害性原则,即大数据技术发展应坚持以人为本,服务于人类社会健康发展和人民生活质量提高。二是权责统一原则,即谁搜集谁负责、谁使用谁负责。三是尊重自主原则,即数据的存储、删除、使用、知情等权利应充分赋予数据产生者。现实生活中,除了遵循这些伦理原则,还应采取必要措施,消除大数据异化引起的伦理风险。
加强技术创新和技术控制。解铃还须系铃人。对于大数据技术带来的伦理问题,最有效的解决之道就是推动技术进步。解决隐私保护和信息安全问题,需要加强事中、事后监管,但从根本上看要靠技术事前保护。应鼓励以技术进步消除大数据技术的负面效应,从技术层面提高数据安全管理水平。例如,对个人身份信息、敏感信息等采取数据加密升级和认证保护技术;将隐私保护和信息安全纳入技术开发程序,作为技术原则和标准。
建立健全监管机制。加强顶层设计,进一步完善大数据发展战略,明确规定大数据产业生态环境建设、大数据技术发展目标以及大数据核心技术突破等内容。同时,逐步完善数据信息分类保护的法律规范,明确数据挖掘、存储、传输、发布以及二次利用等环节的权责关系,特别是强化个人隐私保护。加强行业自律,注重对从业人员数据伦理准则和道德责任的教育培训,规范大数据技术应用的标准、流程和方法。
培育开放共享理念。进入大数据时代,人们的隐私观念正悄然发生变化,如通过各种“晒”将自己的数据信息置于公共空间,一些方面的隐私意识逐渐淡化。这种淡化就是基于对大数据开放共享价值的认同。应适时调整传统隐私观念和隐私领域认知,培育开放共享的大数据时代精神,使人们的价值理念更契合大数据技术发展的文化环境,实现更加有效的隐私保护。在此过程中,不断提高广大人民群众的网络素养,逐步消弭数据鸿沟。
供参考。

阅读全文

与大数据伦理属于下列哪个范畴相关的资料

热点内容
手机微信博云学小程序怎么登录 浏览:792
口罩出口信息怎么看 浏览:859
产品防伪数码是什么意思啊 浏览:161
市场营销有哪些应用 浏览:316
花喜代理怎么加盟 浏览:40
信息管理人员经历了哪些阶段 浏览:969
仁化汽车配件代理加盟如何 浏览:1000
之江生物产品销量怎么样 浏览:670
宇花灵技术怎么用 浏览:602
想去泉州卖菜哪个菜市场人流大 浏览:411
沈阳雪花酒水怎么代理 浏览:125
rng秘密交易是什么意思 浏览:732
重庆红糖锅盔怎么代理赚钱吗 浏览:383
考察投资项目关注哪些数据 浏览:592
家纺家具都有什么产品 浏览:37
丘氏冰棒产品有哪些 浏览:414
程序员如何拉到业务 浏览:177
揭阳火车站到炮台市场怎么走 浏览:843
二线国企程序员怎么提升技能 浏览:154
蓝翔技术学院西点多少钱 浏览:789