⑴ 大数据时代,数据应该如何存储
PB或多PB级基础设施与传统大规模数据集之间的差别简直就像白天和黑夜的差别,就像在笔记本电脑上处理数据和在RAID阵列上处理数据之间的差别。"
当Day在2009年加入Shutterfly时,存储已经成为该公司最大的开支,并且以飞快的速度增长。
"每N个PB的额外存储意味着我们需要另一个存储管理员来支持物理和逻辑基础设施,"Day表示,"面对大规模数据存储,系统会更频繁地出问题,任何管理超大存储的人经常都要处理硬件故障。大家都在试图解决的根本问题是:当你知道存储的一部分将在一段时间内出现问题,你应该如何确保数据可用性,同时确保不会降低性能?"RAID问题解决故障的标准答案是复制,通常以RAID阵列的形式。但Day表示,面对庞大规模的数据时,RAID解决问题的同时可能会制造更多问题。在传统RAID数据存储方案中,每个数据的副本都被镜像和存储在阵列的不同磁盘中,以确保完整性和可用性。但这意味着每个被镜像和存储的数据将需要其本身五倍以上的存储空间。随着RAID阵列中使用的磁盘越来越大(从密度和功耗的角度来看,3TB磁盘非常具有吸引力),更换故障驱动器的时间也将变得越来越长。
"实际上,我们使用RAID并不存在任何操作问题,"Day表示,"我们看到的是,随着磁盘变得越来越大,当任何组件发生故障时,我们回到一个完全冗余的系统的时间增加。生成校验是与数据集的大小成正比的。当我们开始使用1TB和2TB的磁盘时,回到完全冗余系统的时间变得很长。可以说,这种趋势并没有朝着正确的方向发展。"
对于Shutterfly而言,可靠性和可用性是非常关键的因素,这也是企业级存储的要求。Day表示,其快速膨胀的存储成本使商品系统变得更具吸引力。当Day及其团队在研究潜在技术解决方案以帮助控制存储成本时,他们对于一项叫做纠删码(erasure code)的技术非常感兴趣。
采用擦除代码技术的下一代存储
里德-所罗门纠删码最初作为前向纠错码(Forward Error Correction, FEC)用于不可靠通道的数据传输,例如外层空间探测的数据传输。这项技术还被用于CD和DVD来处理光盘上的故障,例如灰尘和划痕。一些存储供应商已经开始将纠删码纳入他们的解决方案中。使用纠删码,数据可以被分解成几块,单块分解数据是无用的,然后它们被分散到不同磁盘驱动器或者服务器。在任何使用,这些数据都可以完全重组,即使有些数据块因为磁盘故障已经丢失。换句话说,你不需要创建多个数据副本,单个数据就可以确保数据的完整性和可用性。
基于纠删码的解决方案的早期供应商之一是Cleversafe公司,他们添加了位置信息来创建其所谓的分散编码,让用户可以在不同位置(例如多个数据中心)存储数据块或者说数据片。
每个数据块就其自身而言是无用的,这样能够确保隐私性和安全性。因为信息分散技术使用单一数据来确保数据完整性和可用性,而不是像RAID一样使用多个副本,公司可以节省多达90%的存储成本。
"当你将试图重组数据时,你并不一定需要提供所有数据块,"Cleversafe公司产品策略、市场营销和客户解决方案副总裁Russ Kennedy表示,"你生成的数据块的数量,我们称之为宽度,我们将重组数据需要的最低数量称之为门槛。你生成的数据块的数量和重组需要的数量之间的差异决定了其可靠性。同时,即使你丢失节点和驱动器,你仍然能够得到原来形式的数据。"
⑵ 什么是pb级存储
提供的企业存储空间达到pb,即100万GB的空间,(1pb=1000tb,1tb=1000gb,1gb=1000mb)。
Pb为petabyte级,Pb是一个更高级别的存储单元,其上有EB、ZB、YB等单元,1PB=1024TB。
未来学家雷蒙德·库兹韦尔(RaymondKurzweil)在其关于pb级数据定义的论文中解释:
人类功能性记忆的容量估计为1.25tb,这意味着800个人类记忆相当于1pb。
(2)数据库pb级如何存储扩展阅读:
pb级数据存储和使用:
AnyShare支持海量非结构告祥塌化数据的统一存储,提供数十亿的容量存储,支持数据的重擦除,提高容量宴渗存储的效率。可以根据需要扩展容量,还可以扩展性能以降低单个GB数据存储的袜圆成本,从而降低总存储成本。
pbAnyShare存储容量,支持蠕虫的特征对象存储系统,AnyShareNAS网关的形式实施周期超过三个月的治疗非结构化数据存档、三个月内的活跃的文件存储在本地业务系统,确保电子档案,证据,如文件数据固化存储很长一段时间,防止被篡改和删除。
AnyShare的固化档案文件可以根据关键词、文件全称或标签等多种搜索方法准确检索出需要的文件,全文搜索可以在一秒内找到文件。
自动生成的标签是标签自动分析AnyShare文档的文档内容的分析选择,和手动标记标签根据需要手动添加帮助拍字节的数据进行分类和归档根据文档内容,并且可以准确地根据标签来提高检索效率的使用和访问文档。
⑶ PB级大规模Elasticsearch集群运维与调优实践
某中型互联网公司的游戏业务,使用了腾讯云的Elasticsearch产品,采用ELK架构存储业务日志。因为游戏业务本身的日志数据量非常大(写入峰值在100w qps),在服务客户的几个月中,踩了不少坑,经过数次优化与调整,把客户的ES集群调整的比较稳定,避免了在业务高峰时客户集群的读写异常,并且降低了客户的资金成本和使用成本。下面把服务客户过程中遇到的典型问题进行梳理,总结经验,避免再次踩坑。
解决方案架构师A: bellen, XX要上线一款新游戏冲卜,日志存储决定用ELK架构,他们决定在XX云和我们之间二选一,我们首先去他们公司和他们交流一下,争取拿下!
bellen: 好,随时有空!
。。。
和架构师一起前往该公司,跟负责底层组件的运维部门的负责人进行沟通。
XX公司运维老大:不要讲你们的PPT了,先告诉我你们能给我们带来什么!
bellen: 。。。呃,我们有很多优势。。。比如灵活地扩容缩容集群,还可以一键平滑升级集群版本,并且提供有跨机房容灾的集群从而实现高可用。。
XX公司运维老大:你说的这些别的厂商也有,我就问一个问题,我们现在要存储一年的游戏日志,不能删除数据,每天就按10TB的数据量算,一年也得有个3PB多的数据,这么大的数量,都放在SSD云盘上,我们的成本太高了,你们有什么方案既能够满足我们存储这么大数据量的需求,同时能够降低我们的成本吗?
bellen: 我们本身提供的有冷热模式的集群,热节点采用SSD云硬盘,冷节点采用SATA盘,采用ES自带的ILM索引生命周期管理功能定期把较老的索引从热节点迁移到冷节点上,这样从整体上可以降低成本。另外一方面,也可以定期把更老的索引通过snapshot快照备份到COS对象存储野模中,然后删除索引,这样成本就更低了。
XX公司运维老大:存储到COS就是冷存储呗,我们需要查询COS里的数据时,还得再把数据恢复到ES里?这样不行,速度太慢了,业务等不了那么长时间,我们的数据不能删除,只能放在ES里!你们能不能给我们提供一个API, 让老的索引数据虽然存储在COS里,但是通过这个API依然可以查询到数据,而不是先恢复到ES, 再进行查询?
bellen: 。。。呃,这个可以做,但是需要时间。是否可以采用hadoop on COS的架构,把存量的老的索引数据通过工具导入到COS,通过hive去查询,这样成本会非常低,数据依然是随时可查的。
XX公司运维老大:那不行,我们只想用成熟的ELK架构来做,再增加hadoop那一套东西,我们没那颂判缓么多人力搞这个事!
bellen: 好吧,那可以先搞一个集群测试起来,看看性能怎么样。关于存量数据放在COS里但是也需要查询的问题,我们可以先制定方案,尽快实施起来。
XX公司运维老大:行吧,我们现在按每天10TB数据量预估,先购买一个集群,能撑3个月的数据量就行,能给一个集群配置的建议吗?
bellen: 目前支持单节点磁盘最大6TB, cpu和内存的话可以放到8核32G单节点,单节点跑2w qps写入没有问题,后面也可以进行纵向扩容和横向扩容。
XX公司运维老大:好,我们先测试一下。
N 天后,架构师A直接在微信群里反馈:"bellen, 客户反馈这边的ES集群性能不行啊,使用logstash消费kafka中的日志数据,跑了快一天了数据还没追平,这是线上的集群,麻烦紧急看一下吧。。"
我一看,一脸懵, 什么时候已经上线了啊,不是还在测试中吗?
XX公司运维小B: 我们购买了8核32G*10节点的集群,单节点磁盘6TB, 索引设置的10分片1副本,现在使用logstash消费kafka中的数据,一直没有追平,kafka中还有很多数据积压,感觉是ES的写入性能有问题。
随后我立即查看了集群的监控数据,发现cpu和load都很高,jvm堆内存使用率平均都到了90%,节点jvm gc非常频繁了,部分节点因为响应缓慢,不停的离线又上线。。
经过沟通,发现用户的使用姿势是filebeat+kafka+logstash+elasticsearch, 当前已经在kafka中存储了有10天的日志数据,启动了20台logstash进行消费,logstash的batch size也调到了5000,性能瓶颈是在ES这一侧。客户8核32G*10节点的集群,理论上跑10w qps没有问题,但是logstash消费积压的数据往ES写入的qps远不止10w,所以是ES扛不住写入压力了,所以只能对ES集群进行扩容,为了加快存量数据的消费速度,先纵向扩容单节点的配置到32核64GB,之后再横向增加节点,以保证ES集群能够最大支持100w qps的写入(这里需要注意的是,增加节点后索引的分片数量也需要调整)。
所以一般新客户接入使用ES时,必须要事先评估好节点配置和集群规模,可以从以下几个方面进行评估:
上述场景2遇到的问题是业务上线前没有对集群配置和规模进行合理的评估,导致上线后ES集群负载就很高,通过合理的扩容处理,集群最终抗住了写入压力。但是又有新的问题出现了。
因为kafka积压的数据比较多,客户使用logstash消费kafka数据时,反馈有两个问题:
经过分析客户logstash的配置文件,发现问题出现的原因主要是:
分析后,对kafka和logstash进行了如下优化:
通过上述优化,最终使得logstash机器资源都被充分利用上,很快消费完堆积的kafka数据,待消费速度追平生成速度后,logstash消费kafka一直稳定运行,没有出现积压。
另外,客户一开始使用的是5.6.4版本的logstash,版本较老,使用过程中出现因为单个消息体过长导致logstash抛异常后直接退出的问题:
通过把logstash升级至高版本6.8避免了这个问题(6.x版本的logstash修复了这个问题,避免了crash)。
客户的游戏上线有一个月了,原先预估每天最多有10TB的数据量,实际则是在运营活动期间每天产生20TB的数据,原先6TB*60=360TB总量的数据盘使用率也达到了80%。针对这种情况,我们建议客户使用冷热分离的集群架构,在原先60个热节点的基础上,增加一批warm节点存储冷数据,利用ILM(索引生命周期管理)功能定期迁移热节点上的索引到warm节点上。
通过增加warm节点的方式,客户的集群磁盘总量达到了780TB, 可以满足最多三个月的存储需求。但是客户的需求还没有满足:
XX公司运维老大:给我们一个能存放一年数据的方案吧,总是通过加节点扩容磁盘的方式不是长久之计,我们得天天盯着这个集群,运维成本很高!并且一直加节点,ES会扛不住吧?
bellen: 可以尝试使用我们新上线的支持本地盘的机型,热节点最大支持7.2TB的本地SSD盘,warm节点最大支持48TB的本地SATA盘。一方面热节点的性能相比云盘提高了,另外warm节点可以支持更大的磁盘容量。单节点可以支持的磁盘容量增大了,节点数量就不用太多了,可以避免踩到因为节点数量太多而触发的坑。
XX公司运维老大:现在用的是云盘,能替换成本地盘吗,怎么替换?
bellen: 不能直接替换,需要在集群中新加入带本地盘的节点,把数据从老的云盘节点迁移到新的节点上,迁移完成后再剔除掉旧的节点,这样可以保证服务不会中断,读写都可以正常进行。
XX公司运维老大:好,可以实施,尽快搞起来!
云盘切换为本地盘,是通过调用云服务后台的API自动实施的。在实施之后,触发了数据从旧节点迁移到新节点的流程,但是大约半个小时候,问题又出现了:
XX公司运维小B: bellen, 快看一下,ES的写入快掉0了。
bellen: 。。。
通过查看集群监控,发现写入qps直接由50w降到1w,写入拒绝率猛增,通过查看集群日志,发现是因为当前小时的索引没有创建成功导致写入失败。
紧急情况下,执行了以下操作定位到了原因:
经过了这次扩容操作,总结了如下经验:
在稳定运行了一阵后,集群又出问题了。。
XX公司运维小B: bellen, 昨晚凌晨1点钟之后,集群就没有写入了,现在kafka里有大量的数据堆积,麻烦尽快看一下?
bellen: 。。。
通过cerebro查看集群,发现集群处于yellow状态,然后发现集群有大量的错误日志:
然后再进一步查看集群日志,发现有"master not discovered yet..."之类的错误日志,检查三个master节点,发现有两个master挂掉,只剩一个了,集群无法选主。
登陆到挂了了master节点机器上,发现保活程序无法启动es进程,第一直觉是es进程oom了;此时也发现master节点磁盘使用率100%, 检查了JVM堆内存快照文件目录,发现有大量的快照文件,于是删除了一部分文件,重启es进程,进程正常启动了;但是问题是堆内存使用率太高,gc非常频繁,master节点响应非常慢,大量的创建索引的任务都超时,阻塞在任务队列中,集群还是无法恢复正常。
看到集群master节点的配置是16核32GB内存,JVM实际只分配了16GB内存,此时只好通过对master节点原地增加内存到64GB(虚拟机,使用的腾讯云CVM, 可以调整机器规格,需要重启),master节点机器重启之后,修改了es目录jvm.options文件,调整了堆内存大小,重新启动了es进程。
3个master节点都恢复正常了,但是分片还需要进行恢复,通过GET _cluster/health看到集群当前有超过10w个分片,而这些分片恢复还需要一段时间,通过调大"cluster.routing.allocation.node_concurrent_recoveries", 增大分片恢复的并发数量。实际上5w个主分片恢复的是比较快的了,但是副本分片的恢复就相对慢很多,因为部分副本分片需要从主分片上同步数据才能恢复。此时可以采取的方式是把部分旧的索引副本数量调为0, 让大量副本分片恢复的任务尽快结束,保证新索引能够正常创建,从而使得集群能够正常写入。
总结这次故障的根本原因是集群的索引和分片数量太多,集群元数据占用了大量的堆内存,而master节点本身的JVM内存只有16GB(数据节点有32GB), master节点频繁full gc导致master节点异常,从而最终导致整个集群异常。所以要解决这个问题,还是得从根本上解决集群的分片数量过多的问题。
目前日志索引是按照小时创建,60分片1副本,每天有24*60*2=2880个分片,每个月就产生86400个分片,这么多的分片可能会带来严重的问题。有以下几种方式解决分片数量过多的问题:
和客户沟通过后,客户表示可以接受方式1和方式2,但是方式3和4不能接受,因为考虑到存在磁盘故障的可能性,必须保留一个副本来保证数据的可靠性;另外还必须保证所有数据都是随时可查询的,不能关闭。
在场景5中,虽然通过临时给master节点增加内存,抗住了10w分片,但是不能从根本上解决问题。客户的数据是计划保留一年的,如果不进行优化,集群必然扛不住数十万个分片。所以接下来需要着重解决集群整体分片数量过多的问题,在场景5的最后提到了,用户可以接受开启shrink以及降低索引创建粒度(经过调整后,每两个小时创建一个索引),这在一定程度上减少了分片的数量,能够使集群暂时稳定一阵。
辅助客户在kibana上配置了如下的ILM策略:
在warm phase, 把创建时间超过360小时的索引从hot节点迁移到warm节点上,保持索引的副本数量为1,之所以使用360小时作为条件,而不是15天作为条件,是因为客户的索引是按小时创建的,如果以15天作为迁移条件,则在每天凌晨都会同时触发15天前的24个索引一共24*120=2880个分片同时开始迁移索引,容易引发场景4中介绍的由于迁移分片数量过多导致创建索引被阻塞的问题,所以以360小时作为条件,则在每个小时只会执行一个索引的迁移,这样把24个索引的迁移任务打平,避免其它任务被阻塞的情况发生。
同时,也在warm phase阶段,设置索引shrink,把索引的分片数缩成5个,因为老的索引已经不执行写入了,所以也可以执行force merge, 强制把segment文件合并为1个,可以获得更好的查询性能。
另外,设置了ILM策略后,可以在索引模板里增加index.lifecycle.name配置,使得所有新创建的索引都可以和新添加的ILM策略关联,从而使得ILM能够正常运行。
客户使用的ES版本是6.8.2, 在运行ILM的过程中, 也发现一些问题:
这是因为shrink操作需要新把索引完整的一份数据都迁移到一个节点上,然后在内存中构建新的分片元数据,把新的分片通过软链接指向到几个老的分片的数据,在ILM中执行shrink时,ILM会对索引进行如下配置:
问题是索引包含副本,而主分片和副本分片又不能在同一个节点上,所以会出现部分分片无法分配的情况(不是全部,只有一部分),这里应该是触发了6.8版本的ILM的bug,需要查看源码才能定位解决这个bug,目前还在研究中。当前的workaround是通过脚本定期扫描出现unassigned shards的索引,修改其settings:
优先保证分片先从hot节点迁移到warm节点,这样后续的shrink才能顺利执行(也可能执行失败,因为60个分片都在一个节点上,可能会触发rebalance, 导致分片迁移走,shrink的前置条件又不满足,导致执行失败)。要完全规避这个问题,还得在ILM策略中设置,满足创建时间超过360个小时的索引,副本直接调整为0,但是客户又不接受,没办法。
在场景5和6中,介绍了10w个分片会给集群带来的影响和通过开启shrink来降低分片数量,但是仍然有两个需要重点解决的问题:
可以估算一下,按小时建索引,60分片1副本,一年的分片数为24*120*365=1051200个分片,执行shrink后分片数量24*10*350 + 24*120*15 = 127200(15天内的新索引为了保障写入性能和数据可靠性,仍然保持60分片1副本,旧的索引shrink为5分片1副本), 仍然有超过10w个分片。结合集群一年总的存储量和单个分片可以支持的数据量大小进行评估,我们期望集群总体的分片数量可以稳定为6w~8w,怎么优化?
可以想到的方案是执行数据冷备份,把比较老的索引都冷备到其它的存储介质上比如HDFS,S3,腾讯云的COS对象存储等,但是问题是这些冷备的数据如果也要查询,需要先恢复到ES中才可查,恢复速度比较慢,客户无法接受。由此也产生了新的想法,目前老的索引仍然是1副本,可以把老索引先进行冷备份,再把副本调为0,这样做有以下几点好处:
经过和客户沟通,客户接受了上述方案,计划把老索引冷备到腾讯云的对象存储COS中,实施步骤为:
其中步骤1的实施可以通过脚本实现,本案例中采用腾讯云SCF云函数进行实施,方便快捷可监控。实施要点有:
在实施完步骤1之后,就可以批量把对索引进行过备份的索引副本数都调为0, 这样一次性释放了很多磁盘空间,并且显着降低了集群整体的分片数量。
接下来实施步骤2,需要每天执行一次快照,多创建时间较久的索引进行备份,实施比较简单,可以通过crontab定时执行脚本或者使用腾讯云SCF执行。
步骤2实施之后,就可以修改ILM策略,开启cold phase, 修改索引副本数量为0:
此处的timing是创建时间20天后,需要保证步骤2中对过去老索引数据备份先执行完成才可以进入到cold phase.
通过老索引数据冷备并且降低索引副本,我们可以把集群整体的分片数量维持在一个较低的水位,但是还有另外一个问题待解决,也即shrink失败的问题。刚好,我们可以利用对老索引数据冷备并且降低索引副本的方案,来彻底解决shrink失败的问题。
在场景5中有提到,shrink失败归根接地是因为索引的副本数量为1, 现在我们可以吧数据备份和降低副本提前,让老索引进入到ILM的warm phase中时已经是0副本,之后再执行shrink操作就不会有问题了;同时,因为副本降低了,索引从hot节点迁移到warm节点迁移的数据量也减少了一半,从而降低了集群负载,一举两得。
因此,我们需要修改ILM策略,在warm phase就把索引的副本数量调整为0, 然后去除cold phase。
另外一个可选的优化项是,对老的索引进行冻结,冻结索引是指把索引常驻内存的一些数据从内存中清理掉(比如FST, 元数据等), 从而降低内存使用量,而在查询已经冻结的索引时,会重新构建出临时的索引数据结构存放在内存中,查询完毕再清理掉;需要注意的是,默认情况下是无法查询已经冻结的索引的,需要在查询时显式的增加"ignore_throttled=false"参数。
经过上述优化,我们最终解决了集群整体分片数量过多和shrink失败的问题。在实施过程中引入了额外的定时任务脚本实施自动化快照,实际上在7.4版本的ES中,已经有这个功能了,特性名称为 SLM (快照生命周期管理),并且可以结合ILM使用,在ILM中增加了"wait_for_snapshot"的ACTION, 但是却只能在delete phase中使用,不满足我们的场景。
在上述的场景4-7中,我们花费大量的精力去解决问题和优化使用方式,保证ES集群能够稳定运行,支持PB级别的存储。溯本回原,如果我们能有一个方案使得客户只需要把热数据放在SSD盘上,然后冷数据存储到COS/S3上,但同时又使冷数据能够支持按需随时可查,那我们前面碰到的所有问题都迎刃而解了。可以想象得到的好处有:
而这正是目前es开源社区正在开发中的Searchable Snapshots功能,从 Searchable Snapshots API 的官方文档上可以看到,我们可以创建一个索引,将其挂载到一个指定的快照中,这个新的索引是可查询的,虽然查询时间可能会慢点,但是在日志场景中,对一些较老的索引进行查询时,延迟大点一般都是可以接受的。
所以我认为,Searchable Snapshots解决了很多痛点,将会给ES带了新的繁荣!
经历过上述运维和优化ES集群的实践,我们总结到的经验有:
从一开始和客户进行接触,了解客户诉求,逐步解决ES集群的问题,最终使得ES集群能够保持稳定,这中间的经历让我真真正正的领悟到"实践出真知",只有不断实践,才能对异常情况迅速做出反应,以及对客户提的优化需求迅速反馈。
⑷ 阿里云服务器ecs怎么用
完成云服务器ecs创建之后的第一步是下载Xftp6。
工具:iphone12、ios14.4、ecs2.1.3。
1、下载Xftp6,进入下载页面后,选择Evaluation user / Home & School user,信息随便填,下载地址会发送到你填写的邮箱,下载完成后正常安装即可。
阿里云主要产品:
1、弹性计算:
云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
负载均衡:对多台云服务器进行流量分发的负载均衡服务
弹性伸缩:自动调整弹性计算资源的管理服务
资源编排:批量创建、管理、配置云计算资源
容器服务:应用全生命周期管理的Docker服务
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
批量计算:简单易用的大规模并行批处理计算服务
E-MapRece:基于Hadoop/Spark的大数据处理分析服务
2、数据库:
云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL
云数据库MongoDB版:三节点副本集保证高可用
云数据库Redis版:兼容开源Redis协议的Key-Value类型
云数据库Memcache版:判轮在线缓存服务,为热点数据的访问提供高速响应
PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库
云数据库HybridDB:基于GreenplumDatabase的MPP数据仓库
云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库
数据传输:比GoldenGate更易用,阿里异地多源神活基础架构
数据管理:比phpMyadmin更强大,比Navicat更易用
⑸ 大数据存储需要具备什么
大数据之大大是相对而言的概念。例如,对于像SAPHANA那样的内存数据库来说,2TB可能就已经是大容量了;而对于像谷歌这样的搜索引擎,EB的数据量才能称得上是大数据。大也是一个迅速变化的概念。HDS在2004年发布的USP存储虚拟化平台具备管理32PB大数据存储需要具备什么?
⑹ 大数据的结构层级
随着互联网的发展,越来越多的信息充斥在网络上,而大数据就是依靠对这些信息的收集、分类、归纳整理喊拿出我们所需要的信息,然后利用这些信息完成一些工作需要的一项能力技术。
今天,沙河电脑培训主要就是来分析一下,大数据这项技术到底有那几个层次。
移动互联网时代,数据量呈现指数级增长,其中文本、音视频等非结构数据的占比已超过85%,未来将进一步增大。Hadoop架构的分布式文件系统、分布式数据库和分布式并行计算技术解决了海量多源异构数据在存储、管理和处理上的挑战。
从2006年4月第一个ApacheHadoop版本发布至今,Hadoop作为一项实现海量数据存储、管理和计算的开源技术,已迭代到了v2.7.2稳定版,其构成组件也由传统的三驾马车HDFS、MapRece和HBase社区发展为由60多个相关组件组成的庞大生态,包括数据存储、执行哗正引擎、编程和数据访问框架等。其生态系统从1.0版的三层架构演变为现在的四层架构:
底层——存储层
现在互联网数据量达到PB级,传统的存储方式已无法满足高效的IO性能和成本要求,Hadoop的分布式数据存储和管理技术解决了这一难题。HDFS现已成为大数据磁盘存储的事实标准,其上层正在涌现越来越多的文件格式封装(如Parquent)以适应BI类数据分析、机器学习类应用等更多的应用场景。未来HDFS会继续扩展对于新兴存储介质和服务器架构的支持。另一方面,区别于常用的Tachyon或Ignite,分布式内存文件系统新贵Arrow为列式内存存储的处理和交互提供了规范,得到了众多开发者和产业巨头的支持。
区别于传统的关系型数据库,HBase适合于非结构化数据存储。而Cloudera在2023年10月公布的分布式关系型数据库Ku有望成为下一代分析平台的重要组郑芦搭成,它的出现将进一步把Hadoop市场向传统数据仓库市场靠拢。
中间层——管控层
管控层对Hadoop集群进行高效可靠的资源及数据管理。脱胎于MapRece1.0的YARN已成为Hadoop2.0的通用资源管理平台。如何与容器技术深度融合,如何提高调度、细粒度管控和多租户支持的能力,是YARN需要进一步解决的问题。另一方面,Hortonworks的Ranger、Cloudera的Sentry和RecordService组件实现了对数据层面的安全管控。
⑺ 银行海量交易数据是怎么存储的
“合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”分析和决策这才是银行引入“大数据”处理的关键因素。仅仅对于“海量流水数据提供给客户查询”而言,只是满足了客户的某个功能性需求而已。
一般来说,银行的数据都是结构化的、持久性存储的(非结构化的数据一般指电子影像,如客户办理业务的回单扫描图片等),以数据库以及文件方式存储为主。按照交易数据性质,我们可以分为“原始流水数据”和“加工后数据”两种。
⑻ 如何架构大数据系统hadoop
大数据数量庞大,格式多样化。
大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。
它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。
因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。
随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。
这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。
因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。
应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。
数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。
在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。
其中分布式存储与计算受关注度最高。
上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅世配体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。
大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。
批处理是先存储后处理,而流处理则是直接处理数据。
挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社冲返巧会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。
大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。
一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。
因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源散键和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。
其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapRece(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Rece则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。
当处理大数据查询时,MapRece会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。
Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。
Hbase利用MapRece来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查操作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。
由MemStore和StoreFile组成。
HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。
于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用**惯,从而改进使用体验。
基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。
丰富的数据源是大数据产业发展的前提。
数据源在不断拓展,越来越多样化。
如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。
对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。
然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这**降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
⑼ 什么是“PB级别的数据”
pb指petabyte,它是较高级穗激的存储单位,其上还有EB,ZB,YB等单位,1PB=1024TB。
未来学家码碧Raymond Kurzweil在他的论文中关于对PB级数据定义解释说:人类功能记忆的容量预计在1.25个TB,这意味着,800个人类记忆才相当于1个PB。
⑽ 大数据量存储的方案
hadoop
什么是大数据存储?
首先,我们需要清楚大数据与其他类型数据的区别以及与之相关的技术(主要是分析应用程序)。大数据本
身意味着非常多需要使用标准存储渣判技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结
构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。
由于这些数据缺乏一致性,使标准处理和存储技术无计可施,而且运营开销以及庞大的数据量使我们难以使用传统的服务器和SAN方法来有效地进行处理。换句话说,大数据需要不同的处理方法:自己的平台,这也是Hadoop可以派上用场的地方。
Hadoop
是一个开源分布式计算平台,它提供了一种建立平台的方法,这个平台由标准化硬件(服务器和内部服务器存储)组成,并形成集群能够并行处理大数据请求。在存
储方面来看,这个开源项目的关键组成部分是Hadoop分布式文件系统(HDFS),该系统具有跨集群中多个成员存储非常大文件的能力。HDFS通过创建
多个数据块副本,然后将其分布在整个集群内的计算机节点,这提供了方便可靠极其快速的计算能力。
从目前来看,为迹梁信大数据建立足姿轮够大的存储平台最简单的方法就是购买一套服务器,并为每台服务器配备数TB级的驱动器,然后让Hadoop来完成余下的工作。对于一些规模较小的企业而言,可能只要这么简单。然而,一旦考虑处理性能、算法复杂性和数据挖掘,这种方法可能不一定能够保证成功。