‘壹’ 数据预处理包括哪些内容
数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术。
通常来说,数据预处理涉及到——
1)数据清理
填写空缺的值,平滑噪声数据,识别、删除孤立点,解决不一致性
2)数据集成
集成多个数据库、数据立方体或文件
3)数据变换
规范化和聚集
4)数据归约
得到数据集的压缩表示,它小得多,但可以得到相同或相近的结果
5)数据离散化
数据归约的一部分,通过概念分层和数据的离散化来规约数据,对数字型数据特别重要。
‘贰’ 预处理是什么 包括哪两种方法
数据库基础分析为什么要进行预处理数据 收藏
做数据预处理很重要,但是如何做好数据预处理似乎是件更困难的事。。。。。
-----------------------------------------------------------------------------------------------------------------------
当今现实世界的数据库极易受噪声、丢失数据和不一致数据的侵扰,因为数据库太大(常常多达数千兆字节,甚至更多),并且多半来自多个异构数据源。低质量的数据将导致低质量的挖掘结果。“如何预处理数据提高数据质量,从而提高挖掘结果的质量?如何预处理数据,使得挖掘过程更加有效、更加容易?”
有大量数据预处理技术。数据清理可以用来去掉数据中的噪声,纠正不一致。数据集成将数据由多个源合并成一致的数据存储,如数据仓库。也可以使用数据变换,如规范化。例如,规范化可以提高涉及距离度量的挖掘算法的准确率和有效性。数据归约可以通过聚集、删除冗余特征或聚类等方法来减小数据规模。这些技术不是互斥的,可以一起使用。例如,数据清理可能涉及纠正错误数据的变换,如将日期字段变换成共同的格式。这些数据处理技术在挖掘之前使用,可以显着地提高挖掘模式的总体质量和/或减少实际挖掘所需要的时间。
介绍数据预处理的基本概念,介绍作为数据预处理基础的描述性数据汇总。描述性数据汇总帮助我们研究数据的一般特征、识别噪声或离群点,对成功的数据清理和数据集成很有用。数据预处理的方法组织如下:数据清理、数据集成与变换和数据归约。概念分层可以用作数据归约的一种替换形式,其中低层数据(如年龄的原始值)用高层概念(如青年、中年或老年)替换。这种形式的数据归约,在那里我们讨论使用数据离散化技术,由数值数据自动地产生概念分层。
为什么要预处理数据
想象你是AllElectronics的经理,负责分析涉及你部门的公司销售数据。你立即着手进行这项工作,仔细地审查公司的数据库和数据仓库,识别并选择应当包含在分析中的属性或维,如item, price和units_sold。啊!你注意到许多元组在一些属性上没有值。为了进行分析,希望知道每种购进的商品是否作了销售广告,但是发现这些信息没有记录下来。此外,你的数据库系统用户已经报告某些事务记录中的一些错误、不寻常的值和不一致性。换言之,你希望
使用数据挖掘技术分析的数据是不完整的(缺少属性值或某些感兴趣的属性,或仅包含聚集数据),含噪声的(包含错误或存在偏离期望的离群值),并且是不一致的(例如,用于商品分类的部门编码存在差异)。欢迎来到现实世界!
存在不完整的、含噪声的和不一致的数据是现实世界大型的数据库或数据仓库的共同特点。不完整数据的出现可能有多种原因。有些感兴趣的属性,如销售事务数据中顾客的信息,并非总是可用的。其他数据没有包含在内只是因为输入时认为是不重要的。相关数据没有记录可能是由于理解错误,或者因为设备故障。与其他记录不一致的数据可能已经删除。此外,记录历史或修改的数据可能被忽略。缺失的数据,特别是某些属性上缺少值的元组可能需要推导出来。
数据含噪声(具有不正确的属性值)可能有多种原因。收集数据的设备可能出故障;人或计算机的错误可能在数据输入时出现;数据传输中的错误也可能出现。这些可能是由于技术的限制,如用于数据传输同步的缓冲区大小的限制。不正确的数据也可能是由命名约定或所用的数据代码不一致,或输入字段(如日期)的格式不一致而导致的。重复元组也需要数据清理。
数据清理例程通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。如果用户认为数据是脏的,则他们不会相信这些数据的挖掘结果。此外,脏数据造成挖掘过程陷入混乱,导致不可靠的输出。尽管大部分挖掘例程都有一些过程处理不完整或噪声数据,但它们并非总是鲁棒的。相反,它们着重于避免建模函数过分拟合数据。因此,一个有用的预处理步骤是使用一些清理例程处理数据。2.3节讨论清理数据的方法。回到你在AllElectronics的任务,假定在分析中包含来自多个数据源的数据。这涉及集成48 多个数据库、数据立方体或文件,即数据集成。代表同一概念的属性在不同的数据库中可能有不同的名字,这将导致不一致性和冗余。例如,顾客标识属性在一个数据库中可能是customer_id,而在另一个中为cust_id。命名的不一致还可能出现在属性值中。例如,同一个人的名字可能在一个数据库中登记为“Bill”,在第二个数据库中登记为“William”,而在第三个数据库中登记为“B”。此外,你可能会觉察到,有些属性可能是由其他属性(例如年收入)导出的。含大量冗余数据可能降低知识发现过程的性能或使之陷入混乱。显然,除数据清理之外,在数据集成时必须采取步骤,避免数据冗余。通常,在为数据仓库准备数据时,数据清理和集成将作为预处理步骤进行。还可以再次进行数据清理,检测和删去可能由集成导致的冗余。
回到你的数据,假设你决定要使用诸如神经网络、最近邻分类法或聚类这样的基于距离的挖掘算法进行分析。如果待分析的数据已经规范化,即按比例映射到一个特定的区间[0.0,1.0],这些方法能得到更好的结果。例如,你的顾客数据包含年龄和年薪属性。年薪属性的取值范围可能比年龄大得多。这样,如果属性未规范化,距离度量对年薪所取的权重一般要超过距离度量对年龄所取的权重。此外,分析得到每个客户区域的销售额这样的聚集信息可能是有用的。这种信息不在你的数据仓库的任何预计算的数据立方体中。你很快意识到,数据变换操作,如规范化和聚集,是导向挖掘过程成功的预处理过程。
随着你进一步考虑数据,你想知道“我选择用于分析的数据集太大了,肯定降低挖掘过程的速度。有没有办法压缩我的数据集而又不损害数据挖掘的结果?”数据归约得到数据集的简化表示,它小得多,但能够产生同样的(或几乎同样的)分析结果。有许多数据归约策略,包括数据聚集(例如建立数据立方体)、属性子集选择(例如通过相关分析去掉不相关的属性)、维度归约(例如使用诸如最小长度编码或小波等编码方案)和数值归约(例如使用聚类或参数模型等较小的表示“替换”数据)。使用概念分层泛化也可以“归约”数据。泛化用较高层的概念替换较低层的概念,例如,对于顾客位置,用region或49 province_or_state替换city。概念分层将概念组织在不同的抽象层。数据离散化是一种数据归约形式,对于从数值数据自动地产生概念分层是非常有用的。
下图总结了这里讨论的数据预处理步骤。注意,上面的分类不是互斥的。例如,冗余数据的删除既是一种数据清理形式,也是一种数据归约。
概言之,现实世界的数据一般是脏的、不完整的和不一致的。数据预处理技术可以改进神经网络和最近邻分类法在第6章介绍,聚类在第7章讨论。
数据的质量,从而有助于提高其后的挖掘过程的精度和性能。由于高质量的决策必然依赖于高质量的数据,因此数据预处理是知识发现过程的重要步骤。检测数据异常、尽早地调整数据并归约待分析的数据,将在决策过程得到高回报。
‘叁’ 大数据的预处理过程包括
大数据采集过程中通常有一个或多个数据源,这些数据源包括同构或异构的数据库、文件系统、服务接口等,易受到噪声数据、数据值缺失、数据冲突等影响,因此需首先对收集到的大数据集合进行预处理,以保证大数据分析与预测结果的准确性与价值性。
大数据的预处理环节主要包括数据清理、数据集成、数据归约与数据转换等内容,可以大大提高大数据的总体质量,是大数据过程质量的体现。 数据清理技术包括对数据的不一致检测、噪声数据的识别、数据过滤与修正等方面,有利于提高大数据的一致性、准确性、真实性和可用性等方面的质量;
数据集成则是将多个数据源的数据进行集成,从而形成集中、统一的数据库、数据立方体等,这一过程有利于提高大数据的完整性、一致性、安全性和可用性等方面质量;
数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。
数据转换处理包括基于规则或元数据的转换、基于模型与学习的转换等技术,可通过转换实现数据统一,这一过程有利于提高大数据的一致性和可用性。
总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素
‘肆’ 数据的预处理有哪些作用
数据预处理的作用是数据清理编辑、数据集成编辑、数据变换编辑、数据归约编辑。
‘伍’ 数据挖掘技术中的数据预处理阶段包括哪些
数据挖掘是从一堆数据中找出输入与输出之间的关系,然后根据新的输入预测输出。简单举例:例如你有北京的房价数据,从1月到10月的,房子不同的面积对应不同的价格。现在到了·11月,然后有一座100平米的房子,你觉得价格应该是多少呢? 这就是从...
‘陆’ 数据预处理的主要方法有哪些
1.墓于粗糙集( Rough Set)理论的约简方法
粗糙集理论是一种研究不精确、不确定性知识的数学工具。目前受到了KDD的广泛重视,利用粗糙集理论对数据进行处理是一种十分有效的精简数据维数的方法。我们所处理的数据一般存在信息的含糊性(Vagueness)问题。含糊性有三种:术语的模糊性,如高矮;数据的不确定性,如噪声引起的;知识自身的不确定性,如规则的前后件间的依赖关系并不是完全可靠的。在KDD中,对不确定数据和噪声干扰的处理是粗糙集方法的
2.基于概念树的数据浓缩方法
在数据库中,许多属性都是可以进行数据归类,各属性值和概念依据抽象程度不同可以构成一个层次结构,概念的这种层次结构通常称为概念树。概念树一般由领域专家提供,它将各个层次的概念按一般到特殊的顺序排列。
3.信息论思想和普化知识发现
特征知识和分类知识是普化知识的两种主要形式,其算法基本上可以分为两类:数据立方方法和面向属性归纳方法。
普通的基于面向属性归纳方法在归纳属性的选择上有一定的盲目性,在归纳过程中,当供选择的可归纳属性有多个时,通常是随机选取一个进行归纳。事实上,不同的属性归纳次序获得的结果知识可能是不同的,根据信息论最大墒的概念,应该选用一个信息丢失最小的归纳次序。
4.基于统计分析的属性选取方法
我们可以采用统计分析中的一些算法来进行特征属性的选取,比如主成分分析、逐步回归分析、公共因素模型分析等。这些方法的共同特征是,用少量的特征元组去描述高维的原始知识基。
5.遗传算法〔GA, Genetic Algo}thrn})
遗传算法是一种基于生物进化论和分子遗传学的全局随机搜索算法。遗传算法的基本思想是:将问题的可能解按某种形式进行编码,形成染色体。随机选取N个染色体构成初始种群。再根据预定的评价函数对每个染色体计算适应值。选择适应值高的染色体进行复制,通过遗传运算(选择、交叉、变异)来产生一群新的更适应环境的染色体,形成新的种群。这样一代一代不断繁殖进化,最后收敛到一个最适合环境的个体上,从而求得问题的最优解。遗传算法应用的关键是适应度函数的建立和染色体的描述。在实际应用中,通常将它和神经网络方法综合使用。通过遗传算法来搜寻出更重要的变量组合。
‘柒’ 数据预处理主要针对哪些数据
数据预处理一方面是为了提高数据的质量,另一方面也是为了适应所做数据分析的软件或者方法。一般来说,数据预处理步骤有数据清洗、数据集成、数据变换、数据规约,每个大步骤又有一些小的细分点。当然了,这四个大步骤在做数据预处理时未必都要执行。
一、数据清洗
数据清洗,顾名思义,“黑”的变成“白”的,“脏”的数据变成“干净”的,脏数据表现在形式上和内容上的脏。
形式上的脏,如:缺失值、带有特殊符号的;
内容上的脏,如:异常值。
缺失值包括缺失值的识别和缺失值的处理。
在R里缺失值的识别使用函数is.na()判别,函数complete.cases()识别样本数据是否完整。
缺失值处理常用的方法有:删除、替换和插补。
删除法 :删除法根据删除的不同角度又可以分为删除观测样本和变量,删除观测样本(行删除法),在R里na.omit()函数可以删除所含缺失值的行。这就相当于减少样本量来换取信息的完整度,但当变量有较大缺失并且对研究目标影响不大时,可考虑删除变量R里使用语句mydata[,-p]来完成。mydata表示所删数据集的名字,p是该删除变量的列数,-表示删除。
替换法 :替换法顾名思义对缺失值进行替换,根据变量的不同又有不同的替换规则,缺失值的所在变量是数值型用该变量下其他数的均值来替换缺失值;变量为非数值变量时则用该变量下其他观测值的中位数或众数替换。
插补法 :插补法分为回归插补和多重插补。回归插补指的是将插补的变量当作因变量y,其他变量看错自变量,利用回归模型进行拟合,在R里使用lm()回归函数对缺失值进行插补;多重插补是指从一个包含缺失值的数据集中生成一组完整的数据,多次进行,产生缺失值的一个随机样本,在R里mice()包可以进行多重插补。
异常值跟缺失值一样包括异常值的识别和异常值的处理。
异常值的识别通常用单变量散点图或箱形图来处理,在R里dotchart()是绘制单变量散点图的函数,boxplot()函数绘制箱现图;在图形中,把远离正常范围的点当作异常值。
异常值的的处理有删除含有异常值的观测(直接删除,当样本少时直接删除会造成样本量不足,改变变量的分布)、当作缺失值(利用现有的信息,对其当缺失值填补)、平均值修正(用前后两个观测值的均值修正该异常值)、不处理。在进行异常值处理时要先复习异常值出现的可能原因,再判断异常值是否应该舍弃。
‘捌’ 数据预处理的方法有哪几类
数据预处理有多种方法: 数据清理, 数据集成,数据变换,数据归约等。这些数据处理技术在数据挖掘之前使用,大大提高了数据挖掘模式的质量,降低实际挖掘所需要的时间。
‘玖’ 数据的预处理一般包括哪些步骤
嗯数据的预处理一般包括哪些是不懂数据的预处理方法过好几项是删除啊复制之类的一些步骤。
‘拾’ 大数据预处理包含哪些
一、数据清理
并不一定的数据全是有使用价值的,一些数据并不是大家所关注的内容,一些乃至是彻底不正确的影响项。因而要对数据过滤、去噪,进而获取出合理的数据。
数据清理关键包括忽略值解决(缺乏很感兴趣的属性)、噪声数据解决(数据中存有着不正确、或偏移期待值的数据)、不一致数据解决。
忽略数据能用全局性变量定义、属性平均值、将会值填充或是立即忽视该数据等方式;噪声数据能用分箱 (对初始数据开展排序,随后对每一组内的数据开展平滑处理)、聚类算法、电子计算机人工服务定期检查重归等方式 除去噪声。
二、数据集成与转换
数据集成就是指把好几个数据源中的数据融合并储存到一个一致的数据库文件。这一全过程中必须主要处理三个难题:模式匹配、数据冗余、数据值冲突检测与解决。
因为来源于好几个数据结合的数据在取名上存有差别,因而等额的的实体线常具备不一样的名字。数据集成中最后一个关键难题就是数据值矛盾难题,具体表现为来源于不一样的统一实体线具备不一样的数据值。
三、数据规约
数据规约关键包含:数据方集聚、维规约、数据缩小、标值规约和定义层次等。
倘若依据业务流程要求,从数据库房中获得了剖析所必须的数据,这一数据集将会十分巨大,而在大量数据上开展数据剖析和数据发掘的成本费又非常高。应用数据规约技术性则能够 完成数据集的规约表明,促使数据集缩小的另外依然趋于维持原数据的一致性。在规约后的数据集在开展发掘,仍然可以获得与应用原数据集几近同样的剖析结果。
关于大数据预处理包含哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。