Ⅰ 大数据的中的数据是从哪里来的
大数据应用中的关键点有三个,首要的就是大数据的数据来源,我们在分析大数据的时候需要重视大数据中的数据来源,只有这样我们才能够做好大数据的具体分析内容。那么大家知不知道大数据的数据来源都是通过什么渠道获得的?下面就由小编为大家解答一下这个问题。
对于数据的来源很多人认为是互联网和物联网产生的,其实这句话是对的,这是因为互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。而物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据的数据来源,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,从严格意义上讲,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,是我们常用的数据来源。
而数据的来源是我们评价大数据应用的第一个关注点。首先需要我们看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是好数据还是坏数据,能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,只有我们找到了好的数据来源,我们就能够做好大数据的工作。这句需要我们去寻找数据比较密集的领域。
一般来说,我们获取数据的时候需要数据密集的行业中挖掘数据,主要就是金融、电信、服务行业等等,而金融是一个特别重要的数据密集领域。金融行业既是产生数据尤其是有价值数据的基地,又是数据分析服务的需求方和应用地。更为重要的是,金融行业具备充足的支付能力,将是大数据产业竞争的重要战场。许多大数据是通过在金融领域的应用辐射到了各个行业。
我们在这篇文章中为大家介绍了大数据的数据来源以及数据密集的领域,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
Ⅱ 如何获取大数据
问题一:怎样获得大数据? 很多数据都是属于企业的商业秘密来的,你要做大数据的一些分析,需要获得海量的数据源,再此基础上进行挖掘,互联网有很多公开途径可以获得你想要的数据,通过工具可以快速获得,比如说象八爪鱼采集器这样的大数据工具,都可以帮你提高工作效率并获得海量的数据采集啊
问题二:怎么获取大数据 大数据从哪里来?自然是需要平时对旅游客群的数据资料累计最终才有的。
如果你们平时没有收集这些数据 那自然是没有的
问题三:怎么利用大数据,获取意向客户线索 大数据时代下大量的、持续的、动态的碎片信息是非常复杂的,已经无法单纯地通过人脑来快速地选取、分析、处理,并形成有效的客户线索。必须依托云计算的技术才能实现,因此,这样大量又精密的工作,众多企业纷纷借助CRM这款客户关系管理软件来实现。
CRM帮助企业获取客户线索的方法:
使用CRM可以按照统一的格式来管理从各种推广渠道获取的潜在客户信息,汇总后由专人进行筛选、分析、跟踪,并找出潜在客户的真正需求,以提供满足其需求的产品或服务,从而使潜在客户转变为真正为企业带来利润的成交客户,增加企业的收入。使用CRM可以和网站、电子邮件、短信等多种营销方式相结合,能够实现线上客户自动抓取,迅速扩大客户线索数量。
问题四:如何进行大数据分析及处理? 大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2. 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。大数据的技术数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类(Classification)、估计(Estimation)、预测(Predic胆ion)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化......>>
问题五:网络股票大数据怎么获取? 用“网络股市通”软件。
其最大特色是主打大数据信息服务,让原本属于大户的“大数据炒股”变成普通网民的随身APP。
问题六:通过什么渠道可以获取大数据 看你是想要哪方面的,现在除了互联网的大数据之外,其他的都必须要日积月累的
问题七:通过什么渠道可以获取大数据 有个同学说得挺对,问题倾向于要的是数据,而不是大数据。
大数据讲究是全面性(而非精准性、数据量大),全面是需要通过连接来达成的。如果通过某个app获得使用该app的用户的终端信息,如使用安卓的占比80%,使用iPhone的占比为20%, 如果该app是生活订餐的应用,你还可以拿到使用安卓的这80%的用户平时网上订餐倾向于的价位、地段、口味等等,当然你还会获取这些设备都是在什么地方上网,设备的具体机型你也知道。但是这些数据不断多么多,都不够全面。如果将这部分用户的手机号或设备号与电子商务类网站数据进行连接,你会获取他们在电商网站上的消费数据,倾向于购买的品牌、价位、类目等等。每个系统可能都只存储了一部分信息,但是通过一个连接标示,就会慢慢勾勒出一个或一群某种特征的用户的较全面的画像。
问题八:如何从大数据中获取有价值的信息 同时,大数据对公共部门效益的提升也具有巨大的潜能。如果美国医疗机构能够有效地利用大数据驱动医疗效率和质量的提高,它们每年将能够创造超过3万亿美元的价值。其中三分之二是医疗支出的减少,占支出总额超过8%的份额。在欧洲发达国家, *** 管理部门利用大数据改进效率,能够节约超过14900亿美元,这还不包括利用大数据来减少欺诈,增加税收收入等方面的收益。
那么,CIO应该采取什么步骤、转变IT基础设施来充分利用大数据并最大化获得大数据的价值呢?我相信用管理创新的方式来处理大数据是一个很好的方法。创新管道(Innovation pipelines)为了最终财务价值的实现从概念到执行自始至终进行全方位思考。对待大数据也可以从相似的角度来考虑:将数据看做是一个信息管道(information pipeline),从数据采集、数据访问、数据可用性到数据分析(4A模型)。CIO需要在这四个层面上更改他们的信息基础设施,并运用生命周期的方式将大数据和智能计算技术结合起来。
大数据4A模型
4A模型中的4A具体如下:
数据访问(Access):涵盖了实时地及通过各种数据库管理系统来安全地访问数据,包括结构化数据和非结构化数据。就数据访问来说,在你实施越来越多的大数据项目之前,优化你的存储策略是非常重要的。通过评估你当前的数据存储技术并改进、加强你的数据存储能力,你可以最大限度地利用现有的存储投资。EMC曾指出,当前每两年数据量会增长一倍以上。数据管理成本是一个需要着重考虑的问题。
数据可用性(Availability):涵盖了基于云或者传统机制的数据存储、归档、备份、灾难恢复等。
数据分析(Analysis):涵盖了通过智能计算、IT装置以及模式识别、事件关联分析、实时及预测分析等分析技术进行数据分析。CIO可以从他们IT部门自身以及在更广泛的范围内寻求大数据的价值。
用信息管道(information pipeline)的方式来思考企业的数据,从原始数据中产出高价值回报,CIO可以使企业获得竞争优势、财务回报。通过对数据的完整生命周期进行策略性思考并对4A模型中的每一层面都做出详细的部署计划,企业必定会从大数据中获得巨大收益。 望采纳
问题九:如何获取互联网网大数据 一般用网络蜘蛛抓取。这个需要掌握一门网络编程语言,例如python
问题十:如何从网络中获取大量数据 可以使用网络抓包,抓取网络中的信息,推荐工具fiddler
Ⅲ 大数据创业 数据哪里来
大数据创业:数据哪里来?需要跨过几道坎?
这篇文章考虑了很久也没下笔,一方面想写得干货一些,一方面又想写得引人入胜一些,纠结来纠结去,终于决定还是以一个中立的用户角度去写,尽量写得大众化一些。
2013年5月10日,在淘宝十周年晚会-马云退休演讲中,马云说:这是一个变化的时代。还有人没搞清楚PC,移动互联网来了;还没搞清楚移动互联网,大数据来了。而变化的时代是年轻人的时代。
马云说的这句话很关键,他不仅提到了大数据,而且更是用一句话阐述了互联网从PC时代,进化到移动互联网时代,然后从移动互联网时代进阶到了大数据时代。有几个关键点很重要:PC时代,全球催生了大量的互联网上市企业,包括谷歌、亚马逊、新浪、搜狐、新东方等等;
移动互联网时代,中国创业热潮风生水起,不仅有大量的移动互联网(包括手游)企业赴美上市,更是诞生了无数个创业奇迹。移动互联网不仅为我们的生活带来了便利,更是把创业热潮推向了历史最高峰。
现在问题来了,大数据时代,创业热潮是不是应该比移动互联网时代更加热闹呢?大数据时代如何创业?大数据创业的门槛又有哪些呢?
先回答第一个问题:大数据时代,创业热潮是不是应该比移动互联网时代更加热闹呢?
据我了解,不是。走在中关村创业大街上,你能收到的100份融资BP里,可能有99份都是APP和O2O项目,但99家里90%以上会重视大数据。
那么大数据时代如何创业呢?请先了解一下大数据的创业门槛。
门槛一:数据大数据大数据,没有数据怎么玩?那么数据从哪里来呢?
像网络、腾讯和阿里巴巴这样的BAT企业,本身就积累了大量的数据,所以他们玩起大数据来,多半是“闷声发大财”。当然了,也可以说几句BAT企业玩大数据的例子,比如说网络旗下的“网络迁徙”、“网络精算”、“网络舆情”、“网络大数据预测引擎”等等,都是网络的大数据产品应用;阿里巴巴的话,“阿里云”、“支付宝-花呗”、“支付宝-借呗”“芝麻信用”、“蚂蚁金服”等等,都应有了大数据技术。而腾讯方面,“腾讯广点通”、“腾讯云分析”和微信等也都引用了大数据技术。
尔等屌丝没有数据,如何玩呢?
首先,你可以通过第三方购买数据,比如说,数据堂就有很多数据出售和分享;
其次,你可以用爬虫爬回一些数据来存储;
再者,通过给企业、开发者、站长等等授权使用大数据工具来积累数据。这方面的新创企业包括Talkingdata、友盟和DataEye等。
最后,使用免费的政府、企业、和机构开放数据。比如说高德数据的API接口和微博商业数据API接口等等。
总体来说,解决好数据源是大数据创业的必要门槛。关键看你创业的项目是什么。
门槛二:硬件在北京,我曾经参观过一家大数据初创企业,当时他们还没有拿到融资。我去他们的办公区发现一幕特别心酸的事情。他们的员工挤在一间很小的屋子里办公,而两件较大的屋子都用来安放大数据存储服务器。大数据的存储量是很惊人的,这对机房和硬件设备也提出了新的挑战。
这一点和移动互联网不太一样,你做一个APP,用电脑搞开发,服务器用云服务器就行,按需购买。但是大数据不行,你没法把自家的数据存储在别人的云服务器上,一方面是安全因素,另外一方面也有产权因素。
硬件也是大数据创业的门槛之一,但不是最大 的门槛。顺便补充一句,我曾经参观过的那家大数据新创企业,目前已完成百万美元的A轮融资,现在他们家的办公区特别宽敞,恭喜星图数据。
门槛三:人才我认为大数据创业的最大门槛在于人才。和做APP不一样,大数据创业你一个人乃至几个人都是没法玩转的。初创企业你就往10-15人这样的团队先招人吧,这样的团队要包括Hadoop工程师、算法工程师,数据建模工程师、架构师、NoSQL工程师、BI工程师等等,全都是技术要求较高、薪资要求也很高的人才。
大数据人才有多贵?在美国,在R、NoSQL和MapRece方面需求的专业人才薪水达到了每年约11万5千美元,在中国也便宜不到哪里去,没有年薪30万,你很难招到一个大数据人才。
也就是说,技术很牛的大数据人才,他的选择面很宽,要么早就进入BAT企业,要么也是在不错的企业拿着高薪,你要挖这样的人才,除了钱,股票、期权、福利等等,都是必须付出的代价。
2015年-2016年是大数据人才最为匮乏的两年,原因很简单,各大刚刚开通了大数据科目的院校,学生还没毕业;而招聘市场上的大数据人才需求量远远已经供不应求。除了BAT企业,通信企业、电力企业、金融银行行业、医疗行业、工业、游戏行业等等,哪个行业不是都在招大数据人才?创业公司要在这么严峻的人才环境中找到适合自己的大数据技术人才,门槛可不止是钱。
门槛四:技术说了人才,就要说技术了。大数据技术不是你懂C++或者R语言就够了的,大数据有一整套自己的技术体系,包括统计、编程、JAVA、数据库、Hadoop、Spark、NoSQL、机器学习、自然语言处理、算法、数据可视化等等技术。光是Hadoop需要用到的技术和编程语言就有很多项。
而且市面上的大数据工具每家用的还不一样,用开源软件(如Hadoop、Spark)或者用SAP(SAP HANA)需要的技术也不一样。技术要求较高,而拥有大数据综合技术的人才又较少,这也成为了制约大数据创业的最大问题。
门槛五:钱其实我不想写钱,但是又必须写钱。大数据行业创业不缺资本,只要你创业项目的商业模式没问题,并且技术能力强,且团队靠谱,无论在中国还是在美国,融个A轮还是没有问题的,资本关注度很热。但是你在拿到融资之前,自己启动的资金就需要一大笔。人才、硬件和技术成本都较高。
这么理解吧,如果说,几个好朋友凑50万花3个月可以做一个APP项目,那么要在大数据行业创业的话,请先准备600-800万再来玩。
门槛六:商业模式中国互联网上最赚钱的行业是什么?我认为是电子商务和网络游戏。电子商务和网络游戏也是互联网变现最快的行业。而大数据,它的变现能力不如网络游戏和电子商务那般简单直接。在我拜访过的很多企业中,他们手里有钱、有数据、有人才也有技术,但是他们不知道自己手里的数据可以拿来做什么。
也就是说,大数据目前没有最明朗最直接的商业模式。大数据只有和业务场景结合,才能产生价值。
大数据就像石油原油一样,你知道它在哪里,你可以开采它,但是开采出来你还需要冶炼,并且经过减压蒸馏、加氢精制、溶剂精制、溶剂脱蜡等炼制过程,成为成品油后运送到各个加油站,让汽车加满油后产生了动力才实现最终价值。大数据也一样,需要一整套复杂 的过程才能实现商业价值。
那么你可能会问了,大数据交易算不算是商业模式呢?我个人觉得,要看交易的是什么东西?原始的非结构化的数据,后面数据清洗需要太多的工序,数据存储也是很大的成本,这样的交易代价太高。我相信无论是企业用户也好,还是个人用户也好,大家更倾向于购买“拿来就能用”的大数据数据源。
你说京东和腾讯完成首笔大数据交易,我觉得就是一个笑话,京东和腾讯的大数据不早就整合在一起了么?我用微信直接就能在京东购物,数据是互通的,何必交易?
所以说,大数据创业最难的还是在于商业模式的思考,如果你没有找到一条让大数据变现的渠道,那么千万不要忙着拉团队创业。大数据行业创业,光有idea是不够的,跑通整个商业模式才是关键。
以上是小编为大家分享的关于大数据创业 数据哪里来?的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 大数据,云计算中的海量数据是哪里来的
都是为数据存储和处理服务的;都需要占用大量的存储和计算资源,因而都要用到海量数据存储技术、海量数据管理技术、MapRece等并行处理技术。因此,云计算和大数据是一个硬币的两面,云计算是大数据的 IT 基础,而大数据是云计算的一个杀手级应用。
Ⅳ 疫情大数据推送的数据来源于哪里
疫情大数据推送的数据来源于三大运营商的数据。大数据分析指的三大运营商的大数据分析,依据个人用户的手机曾经和哪些城市或者是哪些城市的某个区域的基站上进行过信令和数据的交互。
疫情防疫大数据分析
大数据分析基本是准确的,但是会有一定程度的扩大。运营商的基站是有比较准确的经纬度的,一般如果城市里某个区域被确定为”中高风险“区域的话,政府有关部分会要求运营商提供在某段时间到过这些区域的用户,给出相应的提醒。
运营商的内部人员,一般会在地图上将要排查的区域周边的基站框选,来率先定义中高风险区域的基站(小区),然后再去筛选某时间和这些基站(小区)发生过数据交互、信令交互的手机终端号码。
为了确保不会有被遗漏的用户,框选的范围还要比实际的中高风险区域还要大一些,因为有些基站的覆盖距离是比较远的,某些基站如果天线倾角不合理的话,可能会在城区覆盖2-3公里的。
Ⅵ 大数据从哪里来
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
Ⅶ 大数据为什么会有那么多数据
因为我们平时在用的各个软件,无时无刻都在收集着我们的个人信息、数据,所以大数据会有越来越多的数据。
大数据这个概念出现的几率越来越多,是因为现在我们所处于这个时代上,很多信息都已经突发猛进,人们的生活水平都已经改善了,很多东西都是要通过大数据来统计,包括我们现在互联网的一个进步之后。我们所处的一些东西之后,全部都是变成数字化,只有大数据才能够实行。
大数据的来源非常广泛,如信息管理系统、网络信息系统、物联网系统、科学实验系统等,其数据类型包括结构化数据、半结构化数据和非结构化数据。大数据的主要来源。
(1)信息管理系统:企业内部使用的信息系统,包括办公自动化等。信息管理系统主要通过用户数据和系统二次加工的方式产生数据,其产生的大数据大多数为结构化数据,通常存储在数据库中。大数据的主要来源。
(2)网络信息系统:基于网络运行的信息系统即网络信息系统是大数据产生的重要方式,如电子商务系统、社交网络、社会媒体、搜索引擎等都是常见的网络信息系统。网络信息系统产生的大数据多为半结构化或非结构化的数据。
Ⅷ 大数据来自哪里大数据会去哪里
大数据来自哪里?大数据会去哪里?
初识大数据,首先我们需要知道什么是大数据呢?用通俗一点的话来说就是一堆一堆又一堆的、海量的数据。通过网络我们知道“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”
在当下的互联网飞速发展的时代,任何一个技术都是为了达到某种目的而发展的,而大数据从根本上来说就是为了做决定存在的,大数据为企业的决策提供有力的依据。比如市场方针的制定,精准营销的目标群体、营销数据等等。大数据的存在不仅是为企业提供了数据支撑,而且为用户提供了更为便捷的信息和数据服务。
大数据体现的是数据的数量多,数据类型丰富。我们需要通过对数据的关系的的挖掘,才能最终将数据进行更好地利用。
谁是物联网?
物联网是什么呢?通俗的概念来讲,物联网就是通过网络信息技术和工业自动化控制技术将硬件和网络进行有效的集合并通过传感器进行对应的信息控制,以此达到对物件的自动控制的混合网络。通过网络我们知道“物联网(The Internet of things)就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用。”
随着工业控制、信息识别和互联网网络的发展,物联网将是下一个信息浪潮。
大数据与物联网的联系既有区别也关联。以小编的个人愚见,物联网行业如果需要有较好的发展,那么需要大数据强力的支持,而针对物联网行业的大数据,则是不断来源于物联网超级终端的数据采集。所以,物联网对大数据的要求相比于大数据对物联网的依赖更为严重。
大数据来自哪里?大数据会去哪里?
浅谈大数据的来源
大数据的来源这个问题其实很简单,大数据的来源无非就是我们通过各种数据采集器、数据库、开源的数据发布、GPS信息、网络痕迹(购物,搜索历史等)、传感器收集的、用户保存的、上传的等等结构化或者非结构化的数据。
浅谈大数据能够带给我们什么
大数据能给我们带来什么?很多公司现在都在炒大数据的概念,但是真正能做好的有几个呢?大数据重在积累、强在分析、利于运用。没有经过多年的有意的数据收集、没有经过严谨细心的数据分析。那么,如何来谈论大数据能给企业或者个人来带来便捷呢?
大数据能带给企业的项目立项的数据支撑、精准化营销、电商的仓位储备等等。但是针对个人用户有时候就是麻烦了,因为你随时都可以接收到很多的营销短信、隐私暴露太多。另外对于个人用户大数据的好处是可以快速找到自己想要东西、为用户提供信息服务、获取消费指导等等。换个角度看问题的话,小编认为应该是利大于弊。
大数据是怎么带给我们想要的支撑?
庞大的数据需要我们进行剥离、整理、归类、建模、分析等操作,通过这些动作后,我们开始建立数据分析的维度,通过对不同的维度数据进行分析,最终我们才能得到我们想到的数据和信息。
1、 项目立项前的市场数据分析为决策提供支撑;
2、 目标用户群体趋势分析为产品提供支撑和商务支撑;
3、 通过对运营数据的挖掘和分析为企业提供运营数据支撑;
4、 通过对用户行为数据进行分析,为用户提供生活信息服务数据支撑和消费指导数据支撑。
如何通过大数据挖掘潜在的价值?
模型对于大数据的含义
模型有直观模型,物理模型,思维模型,符合模型等。我们在进行数据挖掘前需要考虑我们需要用这些数据来干什么?需要建立怎么样的模型?然后根据模型与数据的关系来不断优化模型。
只有建立了正确的模型才能让数据的挖掘和分析更有便捷。
Ⅸ 网络大数据在什么地方获取
社区、论坛、微博、知乎、FACEBOOK、Twitter、Ins等社交媒体
网络、搜狗、360、谷歌、必应、雅虎等搜索引擎
美团、大众点评、58同城、赶集网等信息分类网站
企查查、天眼查等企业工商信息API
智联、BooS直聘、拉勾、中华英才、领英等招聘网站
阿里巴巴、慧聪、商业新知、软服之家等ToB类平台或行业网站
政府数据开放平台
北京市政务数据资源网、上海市政府数据服务网、天津市信息资源统一开放平台、开放广东、浙江政务服务网“数据开放”专题网站、武汉市政务公开数据服务网、长沙市政府门户网站数据开放平台、苏州市政府数据开放平台、成都市公共数据开放平台、数据开放--四川省人民政府网站……
国家相关部门统计信息网站
中国人民银行、中国银行业监督管理委员会、中国证券监督管理委员会、中国银保险监督管理委员会、中国国家统计局……
国外数据开放网站
纽约政府开放数据平台、美国官网数据超市、新加坡政府开放数据平台、休斯顿市开放数据门户网站、Academic Torrents、hadoopilluminated.com、美国人口普查局、世界银行开放数据搜索网站、费城开放数据平台……
资源节选自:
【Open Data】国外开放数据中心及政府数据开放平台汇总
最全的中国开放数据(open data)及政府数据开放平台汇总
Ⅹ 疾控中心大数据来自哪
大数据是根据我国三大运营商,根据基站发出信号,和手机号卡接收信号而查出来的。
自疫情爆发以来,网络一直与中国疾病预防控制中心密切合作,以人工智能、大数据技术助力中国疾控中心监测疫情发展态势、研判防疫科普需求,开发定制化的病毒RNA二级结构分析工具等,支持疫情防控和病毒研究工作。
4月24日,双方合作取得最新进展,网络与中国疾病预防控制中心病毒病预防控制所(以下简称“中国疾控中心病毒病所”)达成战略合作协议,双方将联合设立“中国CDC应急技术中心-网络基因测序工作站”,共同推动新冠肺炎病毒基因组分析与新型疫苗研究工作。
大数据在战疫中的创新应用集中在三个方面:
一是疫情监测追踪。在疫情趋势研判、流行病学调查、舆情信息动态、人员迁徙和车辆流动、资源调配和物流运输等方面,通过政企合作开发大数据分析产品或服务,为政府、企业和公众提供实时动态的信息以辅助决策。全国各地很多科技企业都开发了各具特色的大数据平台和解决方案。媒体平台纷纷利用大数据技术绘制“疫情地图”“迁徙地图”,为公众防范传染提供方便。
二是疫情防控救治。基于对位置数据和行为数据的挖掘分析,进行高危人群识别、人员健康追踪、区域风险预判等,实现分区分级的精准识别、精准施策和精准防控。大数据在病情诊疗、疫苗研发、医学研究等场景中也发挥了重要作用。中国疾控中心等机构同国家超算中心、BAT等企业合作,借助后者在算力、算法、数据上的优势加快了疫苗、药物等的研发进度。
三是生产生活服务。诸多互联网、大数据企业和网络平台发挥优势为居民提供线上教育、在线医疗、远程办公、无接触外送、在线娱乐等服务,大批中小微企业开启数字化转型。国家政务服务平台推出疫情防控健康信息码,中国信通院联合三大运营商推出“通信大数据行程卡”。
作为出行、复工复产复学、日常生活及出入公共场所的凭证,实现了健康码全国互认、一码通行。阿里“钉钉”、字节跳动“飞书”、腾讯企业微信等产品则为远程办公提供了便利。