① 大数据就业岗位有哪些
大数据方面的就业主要有三大方向:
一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。
2大数据热门专业
1、Hadoop开发 随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
2、信息架构开发 大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以十分有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
3、数据安全研究 数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
4、ETL研发 企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
② 学大数据可以从事什么职业
1、数据分析师。数据分析师 是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
2、 数据架构师。
数据架构师是负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作 ,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。
从事数据架构师这个职位,需要具备较强的业务理解和业务抽象能力,具备大容量事物及交易类互联网平台的数据库模型设计能力,对调度系统,元数据系统有非常深刻的认识和理解,熟悉常用的分析、统计、建模方法,熟悉数据仓库相关技术,如 ETL、报表开发,熟悉Hadoop,Hive等系统并有过实战经验。
6、Hadoop运维工程师
你需要具备的技术知识:平台大数据环境的部署维护和技术支持, 应用故障的处理跟踪及统计汇总分析,应用安全、数据的日常备份和应急恢复。
7、Hadoop开发工程师
Hadoop是一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架, 以一种可靠、高效、可伸缩的方式进行数据处理。所以说Hadoop解决了大数据如何存储的问题,因而在大数据培训机构中是必须学习的课程。
Hadoop开发工程师需要具备的技术:基于hadoop、hive等构建数据分析平台,进行数据平台架构设计、开发分布式计算业务,应用大数据、数据挖掘、分析建模等技术,对海量数据进行挖掘,发现其潜在的关联规则,对hadoop、hive、hbase、Map/Rece相关产品进行预研、开发,Hadoop相关技术解决海量数据处理问题、大数据量的分析, Hadoop相关业务脚本的性能优化与提升,不断提高系统运行效率。
8、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
③ 大数据就业岗位有哪些
大数据就业的岗位:ETL研发、Hadoop开激租发、信息架构开发、数据安全研究。
1、ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
3、信息架构文件是统筹安排信息的基础,这些统筹安排主要集中在搭建某个特殊产品配腔、一套产品或单个产品的信息架构。除了信息架构和信息规划外还有信息设计,它主要就是为支持信息架构和规划而进行的实际操作活动。
4、数据安全研究:数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
④ 云计算大数据专业可以做什么工作 主要有这些岗位
在当前的大数据时代背景下,选择大数据专业是不错的选择,目前我国这方面人才紧缺,那么大数据有哪些工作岗位呢?
从大的岗位划分上来看,当前大数据岗位可以分为开发岗、算法岗(数据分析)、运维岗等,开发岗的任务涉及到两大方面,其一是完成业务实现,其二是完成数据生产,目前很多传统软件开发任务正在逐渐向大数据开发过渡,这也导致当前大数据开发岗的人才需求量更大一些。从事大数据开发岗,还需要重点学习云计算相关的知识,尤其是PaaS(平台即服务)。
大数据开发岗位是当前人才需求量比较大的岗位之一,不论是本科生还是研究生,当前选择大数据开发岗位会有相对较大的选择空间。大数据开发岗位分为平台研发岗位和行业场景开发岗位两大类,通常大数据平台研发岗位对于从业者的要求相对比较高,属于研发级岗位,而大数据行业应用场景开发则相对要容易一些。
大数据专业是一个比较典型的交叉学科,涉及到的内容包括数学、统计学和计算机三大学科,所以学习的内容还是比较多的,如果不能做好一个系统的学习规划,很容易导致学得杂而不精,这对于就业会产生一定的负面影响。所以,本科期间应该选择一个主攻方向,围绕这个主攻方向来组织知识结构和提升实践能力。
众所周知大数据的方向主要分三个:1、大数据开发方向:涉及的岗位诸如大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;2、数据挖掘、数据分析和机器学习方向:涉及的岗位诸如大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;3、大数据运维和云计算方向:涉及的岗位诸如大数据运维工程师等。
由此可见,大数据的就业岗位是非常多的,而且只要能熟练掌握或者精通一门,就能取得非常不错的成绩。甚至在该方向能独当一面的话,那个人价值就不言而喻了。
⑤ 学大数据可以从事什么职业
大数据可以从事大数据开发工程师、Hadoop开发工程师、数据挖掘、信息架构工程师、大数据分析师等等。
1、大数据开发工程师
大数据开发工程师:统计;精简到两类指标:PV和UV;精简到一句话就是:统计各种指标的PV和UV。具体的工作并不是这么的简单,还需要从业者具备hadoop、spark、kafka、python等知识的应用。
2、Hadoop开发工程师
信息时代数据的爆发式增长,使得数据的规模越来越大,传统BI即商务智能的数据处理成本高涨,加剧了企业的负担。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。
3、数据挖掘
数尘枝老据被清理并准备好进行检查,就可以通过数据挖掘开始搜索过程。这就是企业进行实际发现、决策和预测的搭败过程。数据挖掘在很多方面都是大数据流程的真正核心。
4、信息架构工程师
信息架构师需要懂得定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等,信息架构工程师的工作内容。
5、大数据分析师
大数据分析师需要对海量的大数据做分析、挖掘和展现,并且将其中有价值的信息提派升取出来为决策提供支持,而大数据分析师实际上就是从事这类工作的从业人员。
《大数据人才报告》指出,目前全国的大数据人才仅46万,未来3-5年内将会出现高达150万的大数据人才的缺口。
当下中国互联网行业需求最多的六类人才职位为研发工程师、产品经理、人力资源、市场营销、运营和数据分析。其中需求量最大的是研发工程师,而最为稀缺的是数据分析人才。领英报告表明,高度稀缺的是数据分析人才,其供给指数最低,仅为0.05。并且其才跳槽速度也最快,平均跳槽速度为19.8个月。
根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将高达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。
⑥ 学大数据能找到什么工作
学一门技能以后,再把它转化为谋生的工具,是我们很多人的选择,学大数据的朋友也不例外。此前有人问笔者,学大数据能找到什么工作,哪个最有前景?既然大家感兴趣,那么本文就详细讲讲,学大数据能找到什么工作,哪个最有前景,这个话题,计算机办公软件来解答大家心中的疑问,愿能给大家带来一些有用的参考。
1:当你能够熟练掌握好专业技能的时候,那么就业面积是很广泛的,友喊就业机会也非常多,毕竟现在这个行业是极缺人才的。学大数据的朋友,今后可以从事数据分析师、数据挖掘师/算法工程师、大数据工程师、数据架构师等等职位,当你轮告液有能力做到技术总监这类岗位的话,那么前途更加不可限量!
2:一名优秀的大数据工程师通常需要有统计学知识,有海量数据处理、数据分析和挖掘经验;掌握Hadoop、Kafka、Zookeeper、Hbase、storm的安装与调试;有良好的系统性能优化及故障排除能力;掌握Java或Scala语言,至少精通Python、Perl、Ruby、Bash脚本语言中的一种;熟悉大数据周边相关的数据库系统,关系型数据库和NoSQL等等。
3:至于哪个最有前景,只能说,以上就腊物业方向都是十分有前景的,也都是极缺人才的。一线城市的大数据人才尤为缺乏,物以稀为贵,薪资待遇也是十分可观的。有3到5年工作经验的大数据人才,月薪不开个20K以上,人家都不愿意理睬你。
⑦ 大数据毕业后可以从事什么工作
学大数据从事的职业常常分为大数据系统研发人员、大数据应用开发人员和大数据分析人员,常见的职业有数据分析师、数据架构师、数据挖掘工程师、数据算法工亩毁程师等等。
以下是学大数据可以从事的职业介绍:
1、数据分析师:从事行业数据搜集、整理、分析方面的工作,依据数据做出行业研究、评估和预测。需要掌握SPSS、STATISTIC、Eviews、SAS等数据分析工具以及数据分析的营销思维。
2、数据架构师:负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。
3、数据应用师:用常人能理解的语言表述出数据所蕴含的信息,并根据数据并颂分析结论推动企业内部做出调整。将数据还原到产品中,为产品所用。
4、数据挖掘工程师:从大量的数据中通过算法搜索隐藏于其中的信息,使企业决策智能化、自动化,提高企业工作效率,减少错误决策的可能性。需要具备深厚的统计学基础,需要熟悉R、SAS、 SPSS等统计分析软件。
5、数据算迅蔽备法工程师:负责大数据产品数据挖掘算法与模型部分的设计,制定数据建模、数据处理和数据安全等架构规范并落地实施。需要具备扎实的数据挖掘基础知识,精通机器学习、数学统计常用算法,掌握常见分布式计算框架和技术原理,如Hadoop、MapRece、 Yarn、Storm、Spark等;熟悉Linux操作系统和Shell编程,至少熟练掌握一门编程语言。
⑧ 大数据毕业后去什么岗位就业
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
工作岗位列举几个热门:
初级大数据离线处理,薪资10000-13000;
Spark开发工程师,薪资14000-16000;
Python爬虫工程师,薪资16000-20000;
大数据开发工程师,薪资20000+。
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,建议实地考察对比一下。
祝你学有所成,望采纳。
⑨ 大数据就业方向
该专业毕业的学生可以去对大数据处理有需求的各行业部门,如银行、商业机构、电信、电商公司等入职,也可以从事数据采集、管理、分析与挖掘方面的工作。
1、大数据工程师:从事数据采集与管理工作,需要较强的IT专业能力,这个岗位也有很多别名,如hadoop工程师、javag工程师(大数据)、ETL工程师等,关键看其岗位职责和技能需求,别看名字。应届生月薪平均在10k以上。
2、大数据分析师:从事数据资源开发与利用,主要工作是数据分析、和数据挖掘,能出图表、出报告。需要数量使用一些分析工具,比如spss、SAS,如果能使用编程的方式灵活进行数据分析,就更好了,比如python或R.这个岗位也有别名,比如数据分析师,商务智能分析师。应届生月薪大约在8k以上。
3、算法工程师:从事机器学习,构建人工智能模型,也称机器学习工程师,在商业领域,也有称为商务智能工程师的。该岗位需要很强的数学分析能力和编程能力,是三个岗位中的金领职位,也是月薪最高的职位,应届生月薪目前在15K以上。
⑩ 大数据工作岗位有哪些 就业方向是什么
大数据工作岗位主要围绕数据价值化来展开,涉及到数据采集、数据整理、数据存储、数据分析、数据安全、数据应用等诸多方面。大数据的就业前景很好,未来发展十分广阔。
大数据工作1、大数据开发工程师
架构的开发、构建、测试和维护;负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计和产品开发等。
大数据工作2、数据分析师
收集、处理和执行统计数据分析;应用工具提取、分析、呈现数据,实现数据的业务意义,需要业务理解和工具应用能力。
大数据工作3、数据挖掘工程师
数据建模、机器学习和算法实现;商业智能、用户体验分析、用户流失预测等;除了强大的迹则灶数学和统计能力,对算法代码实现也有很高的要求。
大数据工作4、数据架构师
需求分析、平台选择、技术架构设计、应用设计与开发、测试与部署;先进的算法设计和优化;需要具备数据相关的系统设计和优化、平台级开发和架构设计能力。
大数据工作5、数据库开发
根据客户需求设计、开发和实现数据库系统,通过理想的接口连接数据库和数据库工具,优化数据库系统的性能和效率等。
大数据工作6、数据库管理
数据库设计、数据迁移、数据库性能管理、数据安全管理、故障排除、数据备份、数据恢复等。
大数据工作7、数据科学家
数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率,挖掘数据价值,实现数据到知识的转化。
大数据工作8、数据产品经理
结合数据和业务,做数据产品;平台线提供基础平台和通用数据工具,业务线提供更贴近业务的分析框架和数据应用。
从近两年大数据方向研究生的就业情况来看,姿扮大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
大数据开发工作岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的工作机会,所以对于当前大数据相关专业的大学生来说,如果想获得更强的岗位竞争力和更多的就业渠道,应该考虑读一下研究生。