Ⅰ 数据挖掘的应用场景都有哪些
1.教育领域
数据挖掘技术的应用已经渗入到教育教学的各个方面,如支持教育科学决策、实施个性化教育、对学生的学业成绩进行评估等。数据挖掘的实际应用逐渐突破了传统的教学模式,改善了教学效果,促进了教学质量的提升。
2.风控领域
数据挖掘作为深层次的数据信息分析方法,能够对各种因素之间隐藏的内在联系进行全面分析。目前在风控领域可应用于信贷风险评估、交易欺诈识别、黑产防范及消费信贷四个方面,通过风险预警,可以让风险管理者提前做好准备,从而为决策提供参考信息。
3.医疗领域
目前,医院已经积累了涵盖患者、费用、药物以及相关管理信息等数据资源,数量庞大且类型复杂。数据挖掘技术则能够帮助医院从中提取出有价值的信息,满足医疗服务各个环节的需求。其在医疗成本的预测和控制、慢性疾病的预警、医疗信息质量管理等方面,都起到了明显的正向作用。
关于数据挖掘的应用场景都有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 数据挖掘的应用领域有哪些
数据挖掘的应用非常广泛,只要该产业有分析价值与需求的数据库,皆可利用数据挖掘工具进行有目的的发掘分析。常见的应用案例多发生在零售业、制造业、财务金融保险、通讯及医疗服务。
商场从顾客购买商品中发现一定的关联规则,提供打折、购物券等促销手段,提高销售额;
保险公司通过数据挖掘建立预测模型,辨别出可能的欺诈行为,避免道德风险,减少成本,提高利润;
在制造业中,半导体的生产和测试中都产生大量的数据,就必须对这些数据进行分析,找出存在的问题,提高质量;
电子商务的作用越来越大,可以用数据挖掘对网站进行分析,识别用户的行为模式,保留客户,提供个性化服务,优化网站设计;
一些公司运用数据挖掘的成功案例,显示了数据挖掘的强大生命力:
美国AutoTrader是世界上最大的汽车销售站点,每天都会有大量的用户对网站上的信息点击,寻求信息,其运用了SAS软件进行数据挖掘,每天对数据进行分析,找出用户的访问模式,对产品的喜欢程度进行判断,并设特定服务,取得了成功。
Reuteres是世界着名的金融信息服务公司,其利用的数据大都是外部的数据,这样数据的质量就是公司生存的关键所在,必须从数据中检测出错误的成分。Reuteres用SPSS的数据挖掘工具SPSS/Clementine,建立数据挖掘模型,极大地提高了错误的检测,保证了信息的正确和权威性。
Bass Export是世界最大的啤酒进出口商之一,在海外80多个市场从事交易,每个星期传送23000份定单,这就需要了解每个客户的习惯,如品牌的喜好等,Bass Export用IBM的Intelligent Miner很好的解决了上述问题。
Ⅲ 数据分析挖掘包含哪些工作
1、收集数据
收集数据一般是补充外部数据,包括采用爬虫和接口,获取,补充目前数据不足部分。Python scrapy,requests是很好的工具。
2、准备数据
主要包括数据清洗,预处理,错值纠正,缺失值填补。连续值离散化,去掉异常值,以及数据归一化的过程。同时需要根据准备采用的挖掘工具准备恰当的数据格式。
3、分析数据
通过初步统计、分析以及可视化,或者是探索性数据分析工具,得到初步的数据概况。分析数据的分布,质量,可靠程度,实际作用域,以确定下一步的算法选择。
4、训练算法
整个工作流最核心的一步,根据现有数据选择算法,生成训练模型。主要是算法选择和参数调整:
算法的选择,需要对算法性能和精度以及编码实现难度进行衡量和取舍。 (甚至算法工具箱对数据集的限制情况都是算法选择考虑的内容)。实际工程上,不考虑算法复杂度超过O(N^2)的算法。Java的Weka和Python的Scipy是很好的数据挖掘分析工具,一般都会在小数据集做算法选择的预研。
参数调整。这是一门神奇的技能,只能在实际过程中体会。
5、测试算法
这一步主要是针对监督算法(分类,回归),为了防止模型的Overfit,需要测试算法模型的覆盖能力和性能。方法包括Holdout,还有random subsampling.
非监督算法(聚类),采用更加具体的指标,包括熵,纯度,精度,召回等。
6、使用,解释,修正算法
数据挖掘不是一个静态的过程,需要不断对模型重新评估,衡量,修正。算法模型的生命周期也是一个值得探讨的话题。
Ⅳ 数据挖掘就业方向是什么
数据挖掘就业的途径有以下几种,A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等);B:做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等);C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)。
现在各个公司对于数据挖掘岗位的技能要求偏应用多一些。目前市面上的岗位一般分为算法模型、数据挖掘、数据分析三种。应用及就业领域:当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。
如果对数据挖掘的学习有疑问的话,推荐CDA数据分析师的课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,能够遇到问题解决问题点击预约免费试听课。
Ⅳ 数据挖掘工程师是干什么的
数据挖掘工程师是数据师(Datician['detn])的一种。是从大量的数据中通过算法搜索隐藏于其中知识的工程技术专业人员。这些知识可用使企业决策智能化,自动化,从而使企业提高工作效率,减少错误决策的可能性,以在激烈的竞争中处于不败之地。
数据挖掘工程师的职责:
1、根据自己对行业,以及公司业务的了解,独自承担复杂分析任务,并形成分析报告;
2、相关分析方向包括:用户行为分析、广告点击分析,业务逻辑相关以及竞争环境相关;
3、根据业务逻辑变化,设计相应分析模型并支持业务分析工作开展。
数据挖掘,从字面上理解,就是在数据中找到有用的东西,哪些东西有用就要看具体的业务目标了。最简单的就是统计应用了,比如电商数据,利用用户的浏览、点击、收藏、购买等行为推断用户的年龄、性别、购买能力、爱好等。
想了解更多关于数据挖掘工程师的内容,推荐上CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。真正理解商业思维,项目思维,能够遇到问题解决问题。点击预约免费试听课。
Ⅵ 数据挖掘的前景怎么样,主要是就业方面的
数据挖掘就业的途径主要有以下几种:
1、做科研(在高校、科研单位以及大型企业,主要研究算法、应用等);
2、做程序开发设计(在企业做数据挖掘及其相关程序算法的实现等);
3、数据分析师(在存在海量数据的企事业单位做咨询、分析等)。
现在各个公司对于数据挖掘岗位的技能要求偏应用多一些。目前市面上的岗位一般分为算法模型、数据挖掘、数据分析三种。当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。薪酬方面就目前来看,和大多IT业的职位一样,数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺。从BAT的招聘情况来看,数据挖掘领域相对来说门槛还是比较高的,但是薪酬福利也相对来说比较好,另外随着金融越来越互联网化,大量的算法工程师会成为以后互联网金融公司紧缺的人才。
关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。点击预约免费试听课。