A. 从大数据入门,到达到一定水平,在学习路径上有什么建议
目前我们正处在大数据时代,掌握大数据相关技术对提高自己的职场竞争力一定是有帮助的。
大数据学习建议:
1、0基础小白从Java语言开始学习
因为当前的大数据技术主要是用 Java 实现的或者是基于 Java 的,想入行大数据,Java基础是必备的;
2、Java开发能力需要通过实际项目来锻炼
在学习完Java语言之后,往往只是掌握了Java语言的基本操作,只有通过真正的项目锻炼才能进一步提高Java开发能力。
3、大数据开发有明显的场景要求
大数据开发是基于目前已有信息系统的升级改造,是一个系统的过程,包括平台的搭建、数据的存储、服务的部署等都有较大的变化,要想真正理解大数据需要有一个积累的过程。对于初学者来说,应该先建立一个对开发场景的认知,这样会更好的理解大数据平台的价值和作用。
4、从基础开发开始做起
对于初级程序员来说,不管自己是否掌握大数据平台的开发知识,都是从基础的开发开始做起,基于大数据平台开发环境。
从就业的角度来说,大数据开发是一个不错的选择。但我并不建议脱离实际应用来学习大数据,最好要结合实际的开发任务来一边学习一边使用。
B. 大数据学习路线是什么
主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。
阶段一:学习入门知识
这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。MySQL 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。
MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。
而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。
1、Linux 基础入门(新版)
2、Vim编辑器
3、Git 实战教程
4、MySQL 基础课程
5、MongoDB 基础教程
6、Redis基础教程
阶段二:Java基础
Java 是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。
Java 语言具有功能强大和简单易用两个特征,跨平台应用能力比 C、C++ 更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。最重要的一点是 Hadoop 是用 Java 编写的。
1、Java编程语言(新版)
2、Java进阶之设计模式
3、J2SE核心开发实战
4、JDK 核心 API
5、JDBC 入门教程
6、Java 8 新特性指南
阶段三:Scala基础
Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性。由于 Scala 运行于 Java 平台(Java 虚拟机),并兼容现有的Java 程序,所以 Scala 可以和大数据相关的基于 JVM 的系统很好的集成。
1、Scala 开发教程
2、Scala 专题教程 - Case Class和模式匹配
3、Scala 专题教程 - 隐式变换和隐式参数
4、Scala 专题教程 - 抽象成员
5、Scala 专题教程 - Extractor
6、Scala 开发二十四点游戏
阶段四:Hadoop技术模块
Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。
1、Hadoop入门进阶课程
2、Hadoop部署及管理
3、HBASE 教程
4、Hadoop 分布式文件系统--导入和导出数据
5、使用 Flume 收集数据
阶段五:Hadoop项目实战
当然,学完理论就要进行动手实战了,Hadoop 项目实战可以帮助加深对内容的理解,并锻炼动手能力。
1、Hadoop 图处理--《hadoop应用框架》
阶段六:Spark技术模块
Spark 和 Hadoop 都是大数据框架。Hadoop 提供了 Spark 所没有的功能特性,比如分布式文件系统,而 Spark 为需要它的那些数据集提供了实时内存处理。所以学习 Spark 也非常必要。
1、Spark
2、x 快速入门教程
2、Spark 大数据动手实验
3、Spark 基础之 GraphX 图计算框架学习
4、Spark 基础之 DataFrame 基本概念学习
5、Spark 基础之 DataFrame 高阶应用技巧
6、Spark 基础之 Streaming 快速上手
7、Spark 基础之 SQL 快速上手
8、Spark 基础之使用机器学习库 MLlib
9、Spark 基础之 SparkR 快速上手
10、流式实时日志分析系统--《Spark 最佳实践》
11、使用 Spark 和 D3.js 分析航班大数据
阶段七:大数据项目实战
最后阶段提供了大数据实战项目,这是对常用技能的系统运用,例如使用常用的机器学习进行建模、分析和运算,这是成为大数据工程师过程中的重要一步。
1、Ebay 在线拍卖数据分析
2、流式实时日志分析系统--《Spark 最佳实践》
3、大数据带你挖掘打车的秘籍
4、Twitter数据情感分析
5、使用 Spark 进行流量日志分析
6、Spark流式计算电商商品关注度
7、Spark的模式挖掘-FPGrowth算法
(2)大数据在职如何进阶扩展阅读:
大数据技术的具体内容:
分布式存储计算架构(强烈推荐:Hadoop)
分布式程序设计(包含:Apache Pig或者Hive)
分布式文件系统(比如:Google GFS)
多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo,DynamoDB等)
数据收集架构(比如:Kinesis,Kafla)
集成开发环境(比如:R-Studio)
程序开发辅助工具(比如:大量的第三方开发辅助工具)
调度协调架构工具(比如:Apache Aurora)
机器学习(常用的有Apache Mahout 或 H2O)
托管管理(比如:Apache Hadoop Benchmarking)
安全管理(常用的有Gateway)
大数据系统部署(可以看下Apache Ambari)
搜索引擎架构(学习或者企业都建议使用Lucene搜索引擎)
多种数据库的演变(MySQL/Memcached)
商业智能(大力推荐:Jaspersoft)
数据可视化(这个工具就很多了,可以根据实际需要来选择)
大数据处理算法(10大经典算法)
C. 本科生 想从事大数据 人工智能方向 如何规划大学生涯
从数据分析方向的进阶路径从基础学起,数据思维、回归分析、描述统计与可视化、机器学习精要,这些知识理论宏含由易到难,必须要扎实;数据开发方向的进阶路径,Linux、Java、Scala、Python、机器学习基础,同时也需要进行实践,在解决真正的问题上涨知识。
大数据具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构答绝键。它的特清巧色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
D. 想要学习大数据,应该怎么入门
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
E. 如何才能成为一个数据分析师
数据分析师职位要求 :
1、计算机、统计学、数学等相关专业本科及以上学历;
2、具有深厚的统计学、数据挖掘知识,熟悉数据仓库和数据挖掘的相关技术,能够熟练地使用SQL;
3、三年以上具有海量数据挖掘、分析相关项目实施的工作经验,参与过较完整的数据采集、整理、分析和建模工作;
4、对商业和业务逻辑敏感,熟悉传统行业数据挖掘背景、了解市场特点及用户需求,有互联网相关行业背景,有网站用户行为研究和文本挖掘经验尤佳;
5、具备良好的逻辑分析能力、组织沟通能力和团队精神;
6、富有创新精神,充满激情,乐于接受挑战。
1、态度严谨负责
严谨负责是数据分析师的必备素质之一,只有本着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结及问题。一名合格的数据分析师,应具有严谨、负责的态度,保持中立立场,客观评价企业发展过程中存在的问题,为决策层提供有效的参考依据;不应受其他因素影响而更改数据,隐瞒企业存在的问题,这样做对企业发展是非常不利的,甚至会造成严重的后果。而且,对数据分析师自身来说,也是前途尽毁,从此以后所做的数据分析结果都将受到质疑,因为你已经不再是可信赖的人,在同事、领导、客户面前已经失去了信任。所以,作为一名数据分析师就必须持有严谨负责的态度,这也是最基本的职业道德。
2、好奇心强烈
好奇心人皆有之,但是作为数据分析师,这份好奇心就应该更强烈,要积极主动地发现和挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列问题都要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。越是优秀的数据分析师,好奇心也越不容易满足,回答了一个问题,又会抛出一个新的问题,继续研究下去。只有拥有了这样一种刨根问底的精神,才会对数据和结论保持敏感,继而顺藤摸瓜,找出数据背后的真相。
3、逻辑思维清晰
除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。我记得有位大师说过:结构为王。何谓结构,结构就是我们常说的逻辑,不论说话还是写文章,都要有条理,有目的,不可眉毛胡子一把抓,不分主次。
通常从事数据分析时所面对的商业问题都是较为复杂的,我们要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要我们对事实有足够的了解,同时也需要我们能真正理清问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能真正客观地、科学地找到商业问题的答案。
4、擅长模仿
在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速地成长,因此,模仿是快速提高学习成果的有效方法。这里说的模仿主要是参考他人优秀的分析思路和方法,而并不是说直接“照搬”。成功的模仿需要领会他人方法精髓,理解其分析原理,透过表面达到实质。万变不离其宗,要善于将这些精华转化为自己的知识,否则,只能是“一直在模仿,从未超越过”。
5、勇于创新
通过模仿可以借鉴他人的成功经验,但模仿的时间不宜太长,并且建议每次模仿后都要进行总结,提出可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。现在的分析方法和研究课题千变万化,墨守成规是无法很好地解决所面临的新问题的。
F. 如何从小白进阶为数据科学家
1、复习你的数学和统计技能
一个好的数据科学家必须能够理解数据告诉你的内容,做到这一点,你必须有扎实的基本线性代数,对算法和统计技能的理解。在某些特定场合可能需要高等数学,但这是一个好的开始场合。
2、了解机器学习的概念
机器学习是下一个新兴词,却和大数据有着千丝万缕的联系。机器学习使用人工智能算法将数据转化为价值,并且无需显式编程。
3、学习代码
数据科学家必须知道如何调整代码,以便告诉计算机如何分析数据。从一个开放源码的语言如Python那里开始吧。
4、了解数据库、数据池及分布式存储
数据存储在数据库、数据池或整个分布式网络中。以及如何建设这些数据的存储库取决于你如何访问、使用、并分析这些数据。如果当你建设你的数据存储时没有整体架构或者超前规划,那后续对你的影响将十分深远。
5、学习数据修改和数据清洗技术
数据修改是将原始数据到另一种更容易访问和分析的格式。数据清理有助于消除重复和“坏”数据。两者都是数据科学家工具箱中的必备工具。
6、了解良好的数据可视化和报告的基本知识
你不必成为一个平面设计师,但你确实需要深谙如何创建数据报告,便于外行的人比如你的经理或CEO可以理解。
7、添加更多的工具到您的工具箱
一旦你掌握了以上技巧,是时候扩大你的数据科学工具箱了,包括Hadoop、R语言和Spark。这些工具的使用经验和知识将让你处于大量数据科学求职者之上。
8、练习
在你在新的领域有一个工作之前,你如何练习成为数据科学家?使用开源代码开发一个你喜欢的项目、参加比赛、成为网络工作数据科学家、参加训练营、志愿者或实习生。最好的数据科学家在数据领域将拥有经验和直觉,能够展示自己的作品,以成为应聘者。
9、成为社区的一员
跟着同行业中的思想领袖,阅读行业博客和网站,参与,提出问题,并随时了解时事新闻和理论。
关于如何从小白进阶为数据科学家,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于如何从小白进阶为数据科学家?的相关内容,更多信息可以关注环球青藤分享更多干货
G. 大数据的就业方向
大数据的择业岗位有:
1、大数据开发方向; 所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向;对应岗位:大数据运维工程师。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,南京北大青鸟、中博软件学院、南京课工场等都是不错的选择,建议实地考察对比一下。
祝你学有所成,望采纳。
H. 大数据工程师如何进阶人工智能
数学基础
机器学习有时候也被称为统计学习,其实就是统计大量历史数据中的规律,构建算法模型,再利用模型对现在的数据进行分类和预测。所以学习机器学习算法,先要复习一下统计学和概率论方面的知识。
机器学习算法
系统学习机器学习算法最好的入门级课程是斯坦福大学的机器学习公开课,这门课程由吴恩达讲授,非常经典。还有几本比较经典的书籍可以和公开课相互参照,比如周志华的《机器学习》,俗称“西瓜书”,比较通俗易懂,适合入门;李航的《统计学习方法》,偏数学一些,可以不时翻看。
大数据技术与机器学习框架
在小规模的数据集上做算法练习,用Python程序在单机上运行就可以了,但是在真正的生产环境中,需要面对海量的数据处理计算需求,这就需要用到各种大数据技术产品。各种主流大数据产品都有自己的机器学习框架与算法库,比如Hadoop上有Mahout、Spark上有MLlib,借助这些算法库和工具,可以较快速地在大数据平台上开发机器学习应用程序。
人工智能应用
人工智能距离达到“实用”的地步还有一段距离,大家如果留意会发现关于人工智能类的产品新闻等都是说几年内会取得成就、进行投入等,在现实当中,有投入的人工智能产品么?当然有,不过都是一些弱人工智能,其智能程度并不高。业界其实不缺懂算法的专家,但是却非常短缺能够将机器学习和业务结合,产生实际价值的专家。
关于大数据工程师如何进阶人工智能,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据工程师如何进阶人工智能?的相关内容,更多信息可以关注环球青藤分享更多干货
I. 大数据行业现在很有前景啊,怎么样才能入行啊,求支招
一、整体了解数据分析——5小时
新人们被”大数据“、”人工智能“、”21世纪是数据分析师的时代“等等信息吸引过来,立志成为一名数据分析师,于是问题来了,数据分析到底是干什么的?数据分析都包含什么内容?
市面上有很多讲数据分析内容的书籍,在此我推荐《深入浅出数据分析》,此书对有基础人士可称消遣读物, 但对新人们还是有一定的作用。阅读时可不求甚解,重点了解数据分析的流程、应用场景、以及书中提到的若干数据分析工具,无需纠结分析模型的实现。5个小时,足够你对数据分析工作建立初步的印象,消除陌生感。
二、了解统计学知识——10小时
15个小时只够你了解一下统计学知识,作为入门足够,但你要知道,今后随着工作内容的深入,需要学习更多的统计知识。
本阶段推荐书籍有二:《深入浅出统计学》《统计学:从数据到结论》,要了解常用数理统计模型(描述统计指标、聚类、磨宏庆决策树、贝叶斯分类、回归等),重点放在学习模型的工作原理、输入内容和输出内容,至于具体的数学推导,学不会可暂放一边,需要用的时候再回来看。
三、学习初级工具——20小时
对于非技术类数据分析人员,初级工具只推荐一个:EXCEL。推荐书籍为《谁说菜鸟不会数据分析》,基础篇必须学习,提高篇不一定学(可用其他EXCEL进阶书籍),也可以学习网上的各种公开课。
本阶段重点要学习的是EXCEL中级功能使用(数据透视表,函数,各类图表适用场景及如何制作),如有余力可学习VBA。
四、提升PPT能力——10小时
作为数据分析人员,PPT制作能力是极其重要的一项能力,因此需要花一点时间来了解如何做重点突出,信息明确的PPT,以及如何把各类图表插入到PPT中而又便于更新数据。10个小时并不算多,但已经足够(你从来没做过PPT的话,需要再增加一些时间)。具体书籍和课程就不推荐了,网上一抓一大把,请自行搜索。
五、了解数据库和编程语言——10小时
这个阶段有两个目标:学习基础的数据库和编程知识以提升你将绝判来的工作效率,以及测试一下你适合学习哪一种高级数据分析工具。对于前者,数据库建议学MySQL(虽然Hadoop很有用但你不是技术职位,初期用不到),编程语言建议学Python(继续安利《深入浅出Python》,我真没收他们钱……)。数据库学到联合查询就好,性能优化、备份那些内容用不到;Python则是能学多少学多少。
六、学习高级工具——10小时
虽然EXCEL可以解决70%以上的问题,但剩下30%还是需要高级工具来做(不信用EXCEL做个聚类)。高级分析工具有两个选择:SPSS和R。虽然R有各种各样的好处,但我给的建议是根据你在上一步中的学习感觉来定学哪一个瞎握工具,要是学编程语言学的很痛苦,就学SPSS,要是学的很快乐,就学R。不管用哪一种工具,都要把你学统计学时候学会的重点模型跑一遍,学会建立模型和小幅优化模型即可。