A. 大数据对于电子政务效率提高的体现
大数据对于电子政务效率提高的体现
继云计算、物联网之后,大数据已经成为IT产业的又一次颠覆性技术变革,对国家治理方式、决策、组织和业务流程、提供公共服务的方式等都将产生巨大的影响。而伴随着互联网、云计算、物联网等信息技术的迅猛发握岁展,大量数据的收集、储存、分析、处理及其应用变得更加方便,政府或公众的决策行为将逐渐基于数据和分析而做出。大数据时代的倒,让电子政务变得更加高效、快捷。
大数据创造大价值
具体而言,依托大数据的发展,有利于节约政府投资、加强市场监管,从而提高政府决策能力、提升公共服务能力,实现区域化管理。利用大数据整合信息,将工商、国税、地税、质监等部门所收集的企业基础信息进行共享和比对,通过分析,可以发现监管漏洞,提高执法水平,达到促进财税增收、提高市场监管水平的目的。
建设大数据中心,加强政务数据的获取、组织、分析、决策,通过云计算技术实现大数据对政务信息资源的统一管理,依据法律法规和各部门的需求进行政务资源的开发和利用,可以提高设备资源利用率、避免重复建设、降低维护成本。大数据也将进一步提高决策的效率,提高政府决策的科学性和精准性,提高政府预测预警能力以及应急响应能力,节约决策的成本。
基于城市网格化的管理需要一个统一协调的管理信息整合,各类基础资源和信息都应该是共享的,大数据可以实现这一点。通过充分利用大数据的各类资源,发挥城市网格化管理效用,达到最大程度的共享应用,以提升城市和社区的服务质量、提高服务能力、加强服务管理,创建服务型社会,使城市管理工作和社区服务水平迈上更高的台阶。
有了大数据的强有力支持,还能逐步实现立体化禅宏、多层次、全方位的电子政务公共服务体系,推进信息公开,促进网上办事实时受理、部门协同办理、反馈网上统一查询等服务功能,加快推进智能化电子政务服务和移动政务服务新模式的初步应用,不断拓展个性化服务,进一步增强政府与社会、老百姓直接的双向互动、同步交流。
大数据有力助推大建设
目前,我国基于大数据的信息共享建设已经初步取得一定的成效,但就总体而言,跨部门的信息资源利用系统仍局限在小部分的政府业务范围,而且应用的深度和广度还远远不够,不能满足当今社会发展的要求。我们需要顺应大数据这个趋势,建设基于大数据的网上办事大厅、交换共享平台、社会诚信体系、容灾备份体系和公开平台,建立政务云计算平台,积极推进电子政务建设。
统筹建设省、市、县三级大数据交换共享平台,完善交换共享平台的覆盖范围,打通信息横向和纵向的共享渠道,推进跨地区、跨部门信息资源共享和业务协同。同时,完善全省政务信息资源目录体系,制定全省政务信息资源共享目录和数据标准,强化对各类信息资源的整合,为省、市、县各政府深化电子政务应用提供跨层级、跨部门的数据支撑。建立数据中心之间以及各级政务数据库之间交换、整合、比对、更新、维护机制,建设自然人、法人、空间地理等基础数据库,为社会管理、公共服务和宏观调控提供数据支撑。
开展以云计算为基础的电子政务公共服务平台的顶层设计,建设集中统一的区域性电子政务云平台,为政府部门提供高效的服务器资源、海量的存储空间、高速的网络带宽和安全的网络环境。电子政务云平台将按统一标准建设,即插即用,政府部门可根据自身需求,定制使用。创造一个信息共享、资源共用、运维共管的新局面,逐步实现政府部门统一服务器管理、统一机房、统一运维的目标,以充分整合资源、提高资源利用率、减少重复投资。
致力建设灾备份设施,为党政用户提供统一的容灾备份服务。通过数据备份、数据复制等技术实现数据级容灾,确保各部门业务数据的完整性、一致性和可用性,同时,对部分重要应用系统实现快速切换、数据零丢失的应用级容灾,从而为全省政府部门提供网络、数据以及应用系统的灾难备份与恢复服务。建设大数据中心,将政务部门的数据进行汇总、清洗、比段袭睁对分析后,形成信息资源,并建设一个大数据公开平台,统一对社会开放政务数据,提高整个社会对信息资源的开发利用。
B. 如何提升数据分析能力
1、数据支持。任何一个企业品牌要想进入大数据营销,首先就要制定一个数据收集和整理的要点,明确大数据技术对于企业品牌的营销发展意义。知道怎样合法的收集到自己需要的数据,以及后续如何处理这些数据,如何通过这些数据来为企业盈利等等。这些基本的定义是企业开展大数据营销的第一步。
2、数据使用工具。如果企业已经做好了大数据营销的准备,并且已经有了自己所需的数据资源。那么,这时候就需要一定的大数据分析工具了。市面上的大数据工具给企业商家带来了全新的分析方式,基于成熟的分析结构、视觉化以及数据管理系统也迅速地改变着企业的分析方式,这些数据工具的出现极大的方便了企业的大数据营销进程。
3、大数据人才。现在大数据的火爆,自然而然大数据的人才也就十分的稀缺。一个成功的团队离不开人员的良好配置,大数据人才往往以数据分析人才为主,大致分为以下几种:数据科学家,提供有关统计、相关性和质量等的专业技能;商业分析师,从商业的角度出发,甄别数据科学家从纯粹数据分析角度发现的异常数据以及一般性规律,发掘出其中与公司业务发展紧密相关的数据和规律并根据重要性进行排序;技术专家,帮助提供收集、整理和处理数据所需的硬件和软件解决方案。
关于如何提升数据分析能力,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
C. 如何大力提升数据运营能力,发挥数据应用
首先是传统运营商所提供的服务类型已经从单一的话音结合少量的数据通讯,向多媒体、iptv等多业务叠加模式演变;其次,是价值链的改变,运营商不得不面对为数众多的、并且在逐步壮大的互联网服务提供商和应用提供商,想自己直接经营显然不太现实。但是,以腾讯、网络、新浪等为首的传统互联网巨头认为,三大电信运营商并不会对传统互联网公司以及新兴的移动互联网企业构成威胁,通过合作,互联网公司将与电信运营商实现共赢。如何处理与新兴互联网公司的关系?公司化运作、新的it技术的利用是否是其转型的救命稻草?云、管、端三线布局能否解决管道化的忧虑?这是移动互联网时代,摆在中国移动、中国联通、中国电信三大电信运营商面前的难题。
电信运营商必须深化战略转型,否则将难以应对移动互联网时代的各项挑战
据赛迪顾问数据显示,2012年中国已有超过4亿用户尝试用手机访问互联网,微信用户突破3亿,手机用户上网的频率全面提高。随着未来以智能手机、平板电脑为代表的新式移动互联网终端的不断推出,人们对于移动互联网业务的需求将呈现爆炸式增长趋势。显而易见,移动互联网正在孕育着一个巨大的市场商机。移动互联网产业生态价值链还在重塑过程中,但机遇大于挑战,关键是如何调整商业模式、战略、策略、渠道。
然而,当电信运营商从被动转主动开始拥抱移动互联网所造就的数据时代时,其最强劲的竞争对手互联网巨头已经成为近年来发展最为迅速、灵活、并且创意无限的角色。当前,即便是世界优秀的电信运营商也面临着艰巨的业务转型需要和巨大的发展瓶颈。在移动互联网时代,运营商缺乏互联网运营经验、对终端掌控力度不足、业务创新能力落后、缺乏标准开发能力以及资源使用与管理运营支撑效率低已经成为了运营商全面增长的几个主要的劣势所在。从最新公布的中国移动、2013年一季度财报来看,利润增长几乎停滞,增长显现出疲态。运营商的转型之门若干年后又将重新打开,而不管是“流量经营”和“去电信化”等运营商转型思路,赛迪顾问认为,面临移动互联网带来的庞大的数据挑战,电信运营商的转型之路必须要围绕海量数据所带来的商机作深度挖掘和分析。
海量数据的出现、数据结构变化给运营商的数据管理及分析带来高度挑战
尽管移动互联网时代给电信运营商带来前所未有的机遇,然而正如硬币的两面,这个时代的到来同样也给电信运营商带来了无限的挑战,特别是大数据的挑战。这个挑战主要表现在以下两个方面:其一、传统数据仓库难以满足日益增长的业务数据所带来的存储、计算需求。随着业务发展数据量的增加,应用复杂导致的数据量增加,这些数据量导致了数据存储和处理压力; 数据仓库无法线性扩容,管理难度加大,成本高扩容压力大,效率下降等。其二、传统数据仓库难以满足非结构化数据的处理要求。移动互联网和物联网业务带来的非结构化数据、半结构化数据(如网页、聊天记录)对分析系统提出了不同以往的处理要求,如自然语言处理、网页分类等。下图描述了运营商针对不同业务所应具备的大数据处理模型特征,是运营商急需提升的应用处理能力模型。
图1 电信运营商大数据处理应用模型
从上图看,准实时处理、非实时处理以及oltp/在线事务处理以及在线分析应用四个方向的能力将是电信运营商在主要大数据应用所应具备的能力,也是未来运营商大数据的重要竞争优势的角逐。
利用大数据转型,运营商在行动
其实,各大运营商在面向移动互联时代已经做好了部分准备,而且在应对大数据挑战上逐步提高了竞争意识。
中国电信很早就已经意识到移动互联网时代的到来,并于2005年提出了战略转型的构想,主要目的就是为了应对移动互联网时代的挑战。而当前,中国电信已经提出了“智慧城市”发展战略,其中很重要的技术结合点就是物联网和大数据。基于以上战略,中国电信定位成为智能管道的主导者、综合平台的提供者、内容应用的参与者。而在“流量经营”方面,中国电信从“话务经营”向“流量经营”转型。结合大数据技术,中国电信也将深入idc服务以及智慧城市建设,并发掘移动互联与之结合的商机,重塑转型之路。
中国移动数据部认为,在移动互联网时代,电信运营商需要转型,要以开放的姿态获取更多的合作,而中国移动的阅读、游戏、动漫、音乐等业务都将通过开放合作的方式来寻求发展。通过开放合作平台,中国移动从“移动通信专家”到“移动信息专家”的策略转变,就是为顺应移动互联网时代潮流而做出的改变。这一战略的发展基础就是中国移动针对大数据和云计算研究所获得的应用发展方向。中国移动在大云1.5平台上部署了分析型paas产品,利用bc-hadoop构建大数据处理平台,同时建设了并行数据挖掘系统(bc-pdm&etl)以及商务智能平台(bi-paas)等大数据应用平台,为将来在大数据应用和服务市场做了充分准备。
中国联通对大数据的探索源自于2010年中国联通数据大集中策略的提出。2009年,中国联通3g业务正式商用,提出“统一品牌、统一业务、统一包装、统一资费、统一终端政策、统一服务标准”的“六个统一”策略。这意味着中国联通要走一条数据大集中的路线。2012年底,中国联通就已经成功将大数据和hadoop技术引入到移动通信用户上网记录集中查询与分析支撑系统。当前,中国联通已经新增100亿投资重庆大数据计划,显现了其发展大数据,转型自身业务的决心。
总体来看,运营商利用大数据来推动业务转型将是未来电信市场的一个重要方向。电信运营商如果能够通过技术的进步,不断释放其管道中庞大数据的潜在力量,将会成为未来移动互联时代中最大的赢家。
D. 数字化浪潮来袭,数字化时代生存,我们怎么利用大数据来截取流量
首先是在数据的支持下,业务策略的精细化水平显着提升,直接提升了转化效果。活动迭代的节奏变快了。原本只能做一轮活动。通过快节奏的增长模式,可以支持两轮甚至三轮。更多的尝试意味着更多的数据,更多的数据意味着更精准的洞察。大量数据分散在不同数据分析师的代码中。一组代码不可重复使用,并且有线路障碍,因此您可以使用自己的标签。
要知道大数据挖掘具有连续性、动态性和数据量大的特点。但大数据是衍生产品,不是流量定制数据,无法通过大数据获取相关群体的行为和心理信息。而且,大数据往往是局部对象的全样本,难以实现全对象关联,导致城市现象揭示的片面性。