Ⅰ 怎样保持Oracle数据库SQL性能的稳定性
有客户遇到SQL性能不稳定 突然变差导致系统性能出现严重问题的情况 对于大型的系统来说 SQL性能不稳定 有时突然变差 这是常常遇到的问题 这也是一些DBA的挑战
对于使用Oracle数据库的应用系统 有时会出现运行得好好的SQL 性能突然变差 特别是对于OLTP类型系统执行频繁的核心SQL 如果出现性能问题 通常会影响整个数据库的性能 进而影响整个系统的正常运行 对于个别的SQL 比如较少使用的查询报表之类的SQL 如果出现问题 通常只影响少部分功能模块 而不会影响整个系统
那么应该怎么样保持SQL性能的稳定性?
SQL的性能变差 通常是在SQL语句重新进行了解析 解析时使用了错误的执行计划出现的 下列情况是SQL会重新解析的原因
SQL语句没有使用绑定变量 这样SQL每次执行都要解析
SQL长时间没有执行 被刷出SHARED POOL 再次执行时需要重新解析
在SQL引用的对象(表 视图等)上执行了DDL操作 甚至是结构发生了变化 比如建了一个索引
对SQL引用的对象进行了权限更改森拿
重新分析(收集统计信息)了SQL引用的表和索引 或者表和索引统计信息被删除
修改了与性能相关的部分参数
刷新了共享池
当然重启数据库也会使所有SQL全部重新解析
SQL重新解析后 跟以前相比 性能突然变差 通常是下列原因
表和索引的优化统计信息被删除 或者重新收集后统计信息不准确 重新收集统计信息通常是由于收集策略(方法)不正确引起 比如对分区表使用 *** yze命令而不是用dbms_stats包 收集统计信息时采样比例过小等等 Oracle优化器严重依赖于统计信息 如果统计信息有问题 则很容易导致SQL不能使用正确的执行计划
SQL绑定变量窥蚂祥探(bind peeking) 同时绑定变量对应的列上有直方图 或者绑定变量的值变化范围过大 分区数据分布极不均匀
) 绑定变量的列上有闷春搏直方图
假如表orders存储所有的订单 state列有 种不同的值 表示未处理 表示处理成功完成 表示处理失败 State列上有一个索引 表中绝大部分数据的state列为 和 占少数 有下面的SQL
select * from orders where state=:b
这里:b 是变量 在大多数情况下这个值为 则应该使用索引 但是如果SQL被重新解析 而第一次执行时应用传给变量b 值为 则不会使用索引 采用全表扫描的方式来访问表 对于绑定变量的SQL 只在第一次执行时才会进行绑定变量窥探 并以此确定执行计划 该SQL后续执行时全部按这个执行计划 这样在后续执行时 b 变量传入的值为 的时候 仍然是第一次执行时产生的执行计划 即使用的是全表扫描 这样会导致性能很差
) 绑定变量的值变化范围过大
同样假如orders表有一列created_date表示一笔订单的下单时间 orders表里面存储了最近 年的数据 有如下的SQL
Select * from orders where created_date >=:b ;
假如大多数情况下 应用传入的b 变量值为最近几天内的日期值 那么SQL使用的是created_date列上的索引 而如果b 变量值为 个月之前的一个值 那么就会使用全表扫描 与上面描述的直方图引起的问题一样 如果SQL第 次执行时传入的变量值引起的是全表扫描 那么将该SQL后续执行时都使用了全表扫描 从而影响了性能
) 分区数据量不均匀
对于范围和列表分区 可能存在各个分区之间数据量极不均匀的情况下 比如分区表orders按地区area进行了分区 P 分区只有几千行 而P 分区有 万行数据 同时假如有一列proct_id 其上有一个本地分区索引 有如下的SQL
select * from orders where area=:b and proct_id =:b
这条SQL由于有area条件 因此会使用分区排除 如果第 次执行时应用传给b 变量的值正好落在P 分区上 很可能导致SQL采用全表扫描访问 如前面所描述的 导致SQL后续执行时全部使用了全表扫描
其他原因 比如表做了类似于MOVE操作之后 索引不可用 对索引进行了更改 当然这种情况是属于维护不当引起的问题 不在本文讨论的范围
综上所述 SQL语句性能突然变差 主要是因为绑定变量和统计信息的原因 注意这里只讨论了突然变差的情况 而对于由于数据量和业务量的增加性能逐步变差的情况不讨论
为保持SQL性能或者说是执行计划的稳定性 需要从以下几个方面着手
规划好优化统计信息的收集策略 对于Oracle g来说 默认的策略能够满足大部分需求 但是默认的收集策略会过多地收集列上的直方图 由于绑定变量与直方图固有的矛盾 为保持性能稳定 对使用绑定变量的列 不收集列上的直方图 对的确需要收集直方图的列 在SQL中该列上的条件就不要用绑定变量 统计信息收集策略 可以考虑对大部分表 使用系统默认的收集策略 而对于有问题的 可以用DBMS_STATS LOCK_STATS锁定表的统计信息 避免系统自动收集该表的统计信息 然后编写脚本来定制地收集表的统计信息 脚本中类似如下
exec dbms_stats unlock_table_stats…
exec dbms_stats gather_table_stats…
exec dbms_stats lock_table_stats…
修改SQL语句 使用HINT 使SQL语句按HINT指定的执行计划进行执行 这需要修改应用 同时需要逐条SQL语句进行 加上测试和发布 时间较长 成本较高 风险也较大
修改隐含参数 _optim_peek_user_binds 为FALSE 修改这个参数可能会引起性能问题(这里讨论的是稳定性问题)
使用OUTLINE 对于曾经出现过执行计划突然变差的SQL语句 可以使用OUTLINE来加固其执行计划 在 g中DBMS_OUTLN CREATE_OUTLINE可以根据已有的执行正常的SQL游标来创建OUTLINE 如果事先对所有频繁执行的核心SQL使用OUTLINE加固执行计划 将最大可能地避免SQL语句性能突然变差
注 DBMS_OUTLN可以通过$ORACLE_HOME/rdbms/admin/dbmsol sql脚本来安装
使用SQL Profile SQL Profile是Oracle g之后的新功能 此处不再介绍 请参考相应的文档
除此之外 可以调整一些参数避免潜在的问题 比如将 _btree_bitmap_plans 参数设置为FALSE(这个参数请参考互联网上的文章或Oracle文档)
lishixin/Article/program/Oracle/201311/18054
Ⅱ 如何保证数据库在大批量插入和高并发查询时的性能
1、如果硬信则件允许搞个读写分离。
2、读取数据的时候采用脏读方式,有效提高读取性能
3、插入的时候大滑迟棚批量比如10W条,可以分开10次1W插入,有效提高写入性能,但尽量不要1条1条来,会造成大量事务日志旦轮
Ⅲ 简述如何通过计算机系统硬件资源建设,保障数据库系统的正常高效运行
通过计算机系统硬件资源建设,保障数据库系统的正常高效运行,需要考虑以下几个方面:
数据库的安全性:防止非授权用户对数据库的恶意存取和破坏,例如黑客和犯罪分子。数据库管理系统提供的安全措施主要包括用户身份鉴别、存取控制和数据加密等。
数据库的性能:优化数据库的结构唯悉册设计、存储空间分配、索引建立、查询处理和事务管理等,提高数据库的响应速度和吞吐量。
数据库的可靠性:保证数据库在发生故障时能够恢复到正常状态,避免数据丢失或损坏。数据库管理系统提供的可靠性措施主要包括备份、恢复和日志等。
数据库的可扩展性:使得数据库能够适应不断增长的数据量和用户需求,支持分布式、并行和云计算等技术。
数据库的易用性:为用陆渣户提供指宏一个友好和方便的操作界面,支持多种语言和平台,简化数据库的开发和维护工作。
Ⅳ 怎样提高数据库的性能
1、使你的数据库结构规范化,但是不要求一定达到第三范式,为了显示和打印目的可以有数据冗余2、评估你的系统中对性能影响的关键处,减少被频繁访问的核心表的数量,并在这些核心 表上重点优化索引,表结构(尽量紧凑)。典型的核心表是代码表。 3、对于统计类应用,如果可能应写成触发器和存储过程,这样就有可能把一个消耗大量时 间的统计运算分布到每INSERT,DELETE,或者UPDATE来处理,从而极大提高查询类操作的速度。 查询选择群居索引最有效。其他索引也要针对业务进行选择。由于维护索引也要消耗系 统资源和时间,所以过多的索引对性能是损害甚至是毫无效果的。 5、如果可能,可以利用大数据库对SQL的一些特殊规定来进一步优化,比如查询暗示。 6、适当选择硬件,综合考虑CPU,内存,I/O系统的性能,以当前的CPU,内存配置来看, 很多数据库系统的瓶颈出在I/O系统上。所以如果有可能,最好使用RAID。 当然如果你有足够的财力,可以买更好的服务器,或者桥态搞服务器集群就更利害啦。 7、可能的话,尽量使用存储过程,因为存储过程的执行计划可以重复使用,而且不需要 象普通由CLIENT提交的SQL那样进行处理和编译。 8、检查你的应用程序设计,如果有可能戚兆,尽量减少查询次数和在网络上往返的数据。为了 获取少量字段而写SELECT * 对性能的损害也比较利害。 9、在应用程序中协调并发和一致性之间的矛盾。并不是所有业务都需要放在事务中。大量 业务是允许脏读的,在不关键事务中使用脏读,或者读提交,可以大大降低DEADLOCK和 进程之间彼此等待的机会,从而把由于互相锁定资源引起的等待降低到最小。 不要在事务执行中进行大高消租量计算或者与用户交互的操作,因为事务的执行在要求上是 不允许被打断的原子操作(回滚是失败的),所以事务应该多而短小。长事务会锁住 很多资源比较长的时间,因此也比较容易导致其他进程对资源的等待和死锁的机会。 10、评估你开发系统的关键业务,在很多数据库系统对性能的要求是彼此矛盾的,比如OLTP 应用和DSS是不同的。DSS倾向于使用各种索引加快检索速度,而大量的索引对OLTP则是负担。 11、不要在应用程序中写怪异的SQL 查询,比如 WHERE money!40000,这样的语句,这种 SQL查询,数据库的SQL优化器是无法进行优化的。 12、定期维护和管理你的数据库系统,压缩掉那些垃圾空间,很多数据库系统执行类似 删除,事务等操作的时候,并不回收无用的物理空间。所以,制定一份合理的数据库 维护计划,不要等日志文件或者LOG文件越长越大的时候才去整理数据库。 还有很多很多要注意的东西,。。。。。。
Ⅳ 数据库性能优化有哪些措施
1、调整数据结构的设计
这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2、调整应用程序结构设计
这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3、调整数据库SQL语句
应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(OracleOptimizer)和行锁管理器(row-levelmanager)来调整优化SQL语句。
4、调整服务器内存分配
内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5、调整硬盘I/O
这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6、调整操作系统参数
例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。
实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的。
一、ORACLE数据库性能优化工具
常用的数据库性能优化工具有:
ORACLE数据库在线数据字典,ORACLE在线数据字典能够反映出ORACLE动态运行情况,对于调整数据库性能是很有帮助的。
操作系统工具,例如UNIX操作系统的vmstat,iostat等命令可以查看到系统系统级内存和硬盘I/O的使用情况,这些工具对于管理员弄清出系统瓶颈出现在什么地方有时候很有用。
SQL语言跟踪工具(SQLTRACEFACILITY),SQL语言跟踪工具可以记录SQL语句的执行情况,管理员可以使用虚拟表来调整实例,使用SQL语句跟踪文件调整应用程序性能。SQL语言跟踪工具将结果输出成一个操作系统的文件,管理员可以使用TKPROF工具查看这些文件。
ORACLEEnterpriseManager(OEM),这是一个图形的用户管理界面,用户可以使用它方便地进行数据库管理而不必记住复杂的ORACLE数据库管理的命令。
EXPLAINPLAN——SQL语言优化命令,使用这个命令可以帮助程序员写出高效的SQL语言。
二、ORACLE数据库的系统性能评估
信息系统的类型不同,需要关注的数据库参数也是不同的。数据库管理员需要根据自己的信息系统的类型着重考虑不同的数据库参数。
1、在线事务处理信息系统(OLTP),这种类型的信息系统一般需要有大量的Insert、Update操作,典型的系统包括民航机票发售系统、银行储蓄系统等。OLTP系统需要保证数据库的并发性、可靠性和最终用户的速度,这类系统使用的ORACLE数据库需要主要考虑下述参数:
数据库回滚段是否足够?
是否需要建立ORACLE数据库索引、聚集、散列?
系统全局区(SGA)大小是否足够?
SQL语句是否高效?
2、数据仓库系统(DataWarehousing),这种信息系统的主要任务是从ORACLE的海量数据中进行查询,得到数据之间的某些规律。数据库管理员需要为这种类型的ORACLE数据库着重考虑下述参数:
是否采用B*-索引或者bitmap索引?
是否采用并行SQL查询以提高查询效率?
是否采用PL/SQL函数编写存储过程?
有必要的话,需要建立并行数据库提高数据库的查询效率
三、SQL语句的调整原则
SQL语言是一种灵活的语言,相同的功能可以使用不同的语句来实现,但是语句的执行效率是很不相同的。程序员可以使用EXPLAINPLAN语句来比较各种实现方案,并选出最优的实现方案。总得来讲,程序员写SQL语句需要满足考虑如下规则:
1、尽量使用索引。试比较下面两条SQL语句:
语句A:SELECTdname,
(SELECTdeptnoFROMemp);
语句B:SELECTdname,deptnoFROMdeptWHERENOTEXISTS
(SELECTdeptnoFROMempWHEREdept.deptno=emp.deptno);
这两条查询语句实现的结果是相同的,但是执行语句A的时候,ORACLE会对整个emp表进行扫描,没有使用建立在emp表上的deptno索引,执行语句B的时候,由于在子查询中使用了联合查询,ORACLE只是对emp表进行的部分数据扫描,并利用了deptno列的索引,所以语句B的效率要比语句A的效率高一些。
2、选择联合查询的联合次序。考虑下面的例子:
SELECTstuffFROMtabaa,tabbb,tabcc
WHEREa.acolbetween:alowand:ahigh
ANDb.bcolbetween:blowand:bhigh
ANDc.ccolbetween:clowand:chigh
ANDa.key1=b.key1
AMDa.key2=c.key2;
这个SQL例子中,程序员首先需要选择要查询的主表,因为主表要进行整个表数据的扫描,所以主表应该数据量最小,所以例子中表A的acol列的范围应该比表B和表C相应列的范围小。
3、在子查询中慎重使用IN或者NOTIN语句,使用where(NOT)exists的效果要好的多。
4、慎重使用视图的联合查询,尤其是比较复杂的视图之间的联合查询。一般对视图的查询最好都分解为对数据表的直接查询效果要好一些。
5、可以在参数文件中设置SHARED_POOL_RESERVED_SIZE参数,这个参数在SGA共享池中保留一个连续的内存空间,连续的内存空间有益于存放大的SQL程序包。
6、ORACLE公司提供的DBMS_SHARED_POOL程序可以帮助程序员将某些经常使用的存储过程“钉”在SQL区中而不被换出内存,程序员对于经常使用并且占用内存很多的存储过程“钉”到内存中有利于提高最终用户的响应时间。
四、CPU参数的调整
CPU是服务器的一项重要资源,服务器良好的工作状态是在工作高峰时CPU的使用率在90%以上。如果空闲时间CPU使用率就在90%以上,说明服务器缺乏CPU资源,如果工作高峰时CPU使用率仍然很低,说明服务器CPU资源还比较富余。
使用操作相同命令可以看到CPU的使用情况,一般UNIX操作系统的服务器,可以使用sar_u命令查看CPU的使用率,NT操作系统的服务器,可以使用NT的性能管理器来查看CPU的使用率。
数据库管理员可以通过查看v$sysstat数据字典中“CPUusedbythissession”统计项得知ORACLE数据库使用的CPU时间,查看“OSUserlevelCPUtime”统计项得知操作系统用户态下的CPU时间,查看“OSSystemcallCPUtime”统计项得知操作系统系统态下的CPU时间,操作系统总的CPU时间就是用户态和系统态时间之和,如果ORACLE数据库使用的CPU时间占操作系统总的CPU时间90%以上,说明服务器CPU基本上被ORACLE数据库使用着,这是合理,反之,说明服务器CPU被其它程序占用过多,ORACLE数据库无法得到更多的CPU时间。
数据库管理员还可以通过查看v$sesstat数据字典来获得当前连接ORACLE数据库各个会话占用的CPU时间,从而得知什么会话耗用服务器CPU比较多。
出现CPU资源不足的情况是很多的:SQL语句的重解析、低效率的SQL语句、锁冲突都会引起CPU资源不足。
1、数据库管理员可以执行下述语句来查看SQL语句的解析情况:
SELECT*FROMV$SYSSTATWHERENAMEIN
('parsetimecpu','parsetimeelapsed','parsecount(hard)');
这里parsetimecpu是系统服务时间,parsetimeelapsed是响应时间,用户等待时间,waitetime=parsetimeelapsed_parsetimecpu
由此可以得到用户SQL语句平均解析等待时间=waitetime/parsecount。这个平均等待时间应该接近于0,如果平均解析等待时间过长,数据库管理员可以通过下述语句
SELECTSQL_TEXT,PARSE_CALLS,EXECUTIONSFROMV$SQLAREA
ORDERBYPARSE_CALLS;
来发现是什么SQL语句解析效率比较低。程序员可以优化这些语句,或者增加ORACLE参数SESSION_CACHED_CURSORS的值。
2、数据库管理员还可以通过下述语句:
SELECTBUFFER_GETS,EXECUTIONS,SQL_TEXTFROMV$SQLAREA;
查看低效率的SQL语句,优化这些语句也有助于提高CPU的利用率。
3、数据库管理员可以通过v$system_event数据字典中的“latchfree”统计项查看ORACLE数据库的冲突情况,如果没有冲突的话,latchfree查询出来没有结果。如果冲突太大的话,数据库管理员可以降低spin_count参数值,来消除高的CPU使用率。
五、内存参数的调整
内存参数的调整主要是指ORACLE数据库的系统全局区(SGA)的调整。SGA主要由三部分构成:共享池、数据缓冲区、日志缓冲区。
1、共享池由两部分构成:共享SQL区和数据字典缓冲区,共享SQL区是存放用户SQL命令的区域,数据字典缓冲区存放数据库运行的动态信息。数据库管理员通过执行下述语句:
select(sum(pins-reloads))/sum(pins)"LibCache"fromv$librarycache;
来查看共享SQL区的使用率。这个使用率应该在90%以上,否则需要增加共享池的大小。数据库管理员还可以执行下述语句:
select(sum(gets-getmisses-usage-fixed))/sum(gets)"RowCache"fromv$rowcache;
查看数据字典缓冲区的使用率,这个使用率也应该在90%以上,否则需要增加共享池的大小。
2、数据缓冲区。数据库管理员可以通过下述语句:
SELECTname,valueFROMv$sysstatWHEREnameIN('dbblockgets','consistentgets','physicalreads');
来查看数据库数据缓冲区的使用情况。查询出来的结果可以计算出来数据缓冲区的使用命中率=1-(physicalreads/(dbblockgets+consistentgets))。
这个命中率应该在90%以上,否则需要增加数据缓冲区的大小。
3、日志缓冲区。数据库管理员可以通过执行下述语句:
selectname,valuefromv$sysstatwherenamein('redoentries','redologspacerequests');
查看日志缓冲区的使用情况。查询出的结果可以计算出日志缓冲区的申请失败率:
申请失败率=requests/entries,申请失败率应该接近于0,否则说明日志缓冲区开设太小,需要增加ORACLE数据库的日志缓冲区。
昆明北大青鸟java培训班转载自网络如有侵权请联系我们感谢您的关注谢谢支持
Ⅵ 如何优化数据库的性能
--数据库性能调优
--1.聚集索引、主键
--2.尽量不要用临时表
--3.多多使用事务
--4.表设计要规范
--5.不要使用游标
--6.避免死锁
--7.不要打开大数据集
--8.最好不要select *
--9.不要使用text数据类型,用varchar
--10.不要给诸如“性别”列创建索引
--11.不要使用Insert插入大量的数据
--12.尽量用join代替where,因为where进行全表搜索
Ⅶ 如何保证数据库的安全性和一致性
关系型数据库有四个显着的特征,即安全性、完整性、并发性和监测性。数据库的安全性就是要保证数据库中数据的安全,防止未授权用户随意修改数据库中的数据,确保数据的安全。在大多数数据库管理系统中,主要是通过许可来保证数据库的安全性。完整性是数据库的一个重要特征,也是保证数据库中的数据切实有效、防止错误、实现商业规则的一种重要机制。在数据库中,区别所保存的数据是无用的肢孝垃圾还是有价值的信息,主要是依据数据库的完整性是否健全。在SQL Server 7.0中,数据的完整性是通过一系列逻辑来保障的,这些逻辑分为三个方面,即实体完整性、域完整性和参考完整性。对任何系统都可以这样说,没有监测,就没有优化。这句话用在数据库管理系统方面,也是切合实际的。只有通过对数据库进行全面的性能监测,姿饥缺也才能发现影响迹辩系统性能的因素和瓶颈,才能针对瓶颈因素,采取切合实际策略,解决问题,提高系统的性能。并发性也是一个非常重要的概念,它是用来解决多个用户对同一数据进行操作时的问题。特别是对于网络数据库来说,这个特点更加突出。提高数据库的处理速度,单单依靠提高计算机的物理速度是不够的,还必须充分考虑数据库的并发性问题,提高数据库并发性的效率。那么如何保证并发性呢?在这个面向下一世纪的数据库产品SQL Server 7.0中,通过使用事务和锁机制,解决了数据库的并发性问题。
本文来自: 中国网管联盟(bitsCN.com) 详细出处参考:http://www.bitscn.com/mssql/200605/27004.html
Ⅷ 如何提高oracle数据库的性能
在公路建设中,通过建立多条车道可以提高道路的流量。其实这个道理在Oracle数据库中也行得通。即可以将关键数据文件存储在多块硬盘上,以提高Oracle数据库的性能。可惜的是,不少数据库管理员没有意识到这一点。在这篇文章中笔者就以Oracle11G为例,说明如何通过在硬盘之间分布关键数据文件来提高性能。 一、在硬盘之间分布关键数据文件的基本原则。
在传统的文件系统上(即不是在裸机上)部署Oracle数据库,可以通过将关键的数据文件分布到多个可用的文件系统上或者不同的硬盘上来提高数据库的性能。具体的来说,需要遵循如下几个原则。
一是对于表来说,往往包含两个部分,即基本表与索引表。只要为基本表中的字段创建了索引,其对应的就有一张索引表。当用户访问表中的数据时,应用系统需要同时访问到索引表与数据表。此时我们可以将这两张表比喻成两辆车。如果现在只有一个车道(即将他们同时存放在一个硬盘或者文件系统中),那么两辆车必须前后行使。而如果现在有两个车道(即将基本表与其相对应的索引表存放在不同的硬盘或者文件系统中),那么这两辆车就可以并排行使。显然,后者的效率更高。为此笔者建议,可将经常需要访问的表和与之对应的索引表分开来存放。
二是可以将日志文件也分开来存放。不光光是数据表与索引表存在着这种状况。其实在日志文件管理中也是如此。只要条件允许,那么最好能够将联机重做日志和归档日志与其它数据文件存放在不同的硬盘或者文件系统上。因为当用户往数据库中写入数据时,需要同时往数据文件与重做日志文件中写入数据。此时如果将它们分开来存放,那么就相当于有了多条车道,分别往不同的文件中写入数据。这无疑就可以提高数据写入的效率,从而提高数据库的性能。
二、哪些文件最好能够分开存放?
在讲到硬盘之间分布关键数据文件的基本原则的时候,笔者举了几个需要分开存放的几个案例。但是在实际工作中,并不仅仅局限于上面提到的这些文件。笔者认为,如果条件允许的话,那么可以考虑将如下文件放置在不同的硬盘上。
一是表空间,如临时表空间、系统表空间、UNDO表空间等等。这三个表空间可能系统会同时进行访问。为此需要将其分开来存放。二是数据文件和索引文件。上面提到过,需要将经常访问的数据文件与其对应的索引文件存放在不同的硬盘上。因为这两类文件在访问数据时也可能会同时访问到。三是操作系统盘与数据库文件单独存放。显然Oracle系统肯定是与操作系统同时运行的。为了避免他们之间的I/Q冲突,就需要将Oracle部署在操作系统盘以外的磁盘上。四是码闭联机重做日志文件。这个文件比较复杂,不但要将其与其他文件分开来存放。而且还需要注意的是,最好能够将其存放在性能最佳的硬盘上。
最后需要说明的一点是,增加磁盘也会增加成本。这不光光是购买磁盘所需要的花费,还包括管理的成本。所以这之间也会涉及到成本与性能之间的一个均衡问题。如果企业的数据不是很多,或者主要是涉及到查询操作,那么这么设计的话,就可能不怎么合理。因为投入要大于回报。
三、如何确定是否需要将文件分开来存放?
在实际工作中,企业的数据是一个从少到多的过程。也就是说,刚开始使用数据库的时候,可能数据量比较少,此时出于成本的考虑,没有将相关文件存放在不同的磁盘上。但是随着工作的深入,用户会发现数据库的性能在逐渐的降低。此时管理员就需要考虑,能够采取这种多建车道的措施,来提高数据库性能。当然在采取这个措施之前,管理员需要先进性评估。此时评估所需要用到的一个指标就是磁盘的I/O争用。
磁盘争用通常发生在有多个进程试图同时访问一个物理磁盘的情况下。如现在用启枣户需要访问某个数据表中的数据,此时系统需要访问索引文件与数据表文件。如果将它们放置在同一磁盘上,那么在访问时就会发生I/O冲突。所以评估I/O冲突的严重程度,可以帮我们来确定是否需要将关键文件存放在不同的磁盘上。
将I/O平均的分布到多个可用的磁盘上,这可以有效的减少磁盘之间的争用情况,提高数据存储与读取的性能。从而提高Oracle等应用程序的效率。在实际工作中,数迟旁裂据库控制文件中有两个参数可以用来帮助我们评估这个指标。这两个参数是文件平均读取时间和文件平均写入时间。不过在使用这两个参数的时候,其只评估所有与数据库相关联的文件。管理员如果有需要的话,也可以通过下面的查询语句来查询数据文件是否存在I/O问题。查询的语法与结果如下图所示:
从如上的查询结果中可以看出某个数据文件是否繁忙,数据文件之间是否存在着/I/O冲突文件。这里需要注意的是,这个结果是一个动态的结果。在不同的时刻、用户进行不同的操作时往往会得出不同的结论。为此笔者建议,在使用这个数据的时候,最好能够多跟踪几次。然后分析多次运行的结果。只有如此,才能够得到比较合乎情理的判断。 通常情况下,管理员根据上面的结果可以得出三种结论。
第一种结论是上面这些数据文件都不是很忙。即文件的平均读取时间与写入时间都比较短,表示这两个文件都是比较空闲的。此时正常情况下,数据库的性能应该是不错的。也就是说,如果此时数据库的性能不理想的话,那么就不是磁盘的I/O所造成的。管理员应该从其他角度来改善数据库的性能。
第二种结论是每个数据库文件都非常的繁忙。此时有可能是读取时间或者写入时间比较长,或者说两个时间都比较长。当多个数据文件同时比较繁忙并且他们处于同一磁盘的话,那么管理员就需要考虑购买新的磁盘,然后将上面提到的这些关键文件重新整理,让他们部署在不同的磁盘上。
第三种结论是某几个特定的数据文件比较繁忙,而其他数据文件还可以。此时管理员如果成本受到限制,那么也不需要重新购买硬盘。在磁盘上的物理写入和读取次数上如果出现比较大的差异,就表明某个磁盘负载过大,即有很严重的I/O冲突。此时最好能够将这个磁盘中的文件进行调整,如将某些文件移动到另外的一块I/O相对不怎么严重的磁盘上。不过在采取这个操作的时候,需要注意一点。对于联机重做日志文件来说,即使其所在的磁盘I/O冲突比较低,或者访问这个文件的时间比较短,但是也不建议将其他数据文件转移到其所在的磁盘上来。因为通常情况下,为了保障数据库的性能,我们都建议将联机重做日志文件单独存放,并且还需要讲起放置在性能比较高的硬盘上。
总之,将关键的Oracle数据库文件分开放置。如此的话可以有效避免磁盘争用成为Oracle数据库系统的性能瓶颈。
Ⅸ 频繁查询数据库,怎么保证整个系统的性能
这个有很多可以说的了.以下全部手打by lcg1986:
数据库层面优化
从数据库本身来优化,优化SQL语句,建立适当的索引.尽量让查询条件命中索引,避免全表扫描.
精简查询语句,使用select 字段,避免使用select *.
数据库使用主备机或者集群模式,进行读写分离.
对数据进行分库分表
系统应用层面优化
系统宽袭使用连接池连接数前乎据库,避免频繁的建立连接,释放连接的IO开销.
使用缓存,根据业务场景对数据进行划分,尽量将基本不会发生改变的数据缓存下来,查询时优先查询缓存,减少对数据库的访问.
对服务进行降级功能设计,在并发大到数据库实在无法处理的情况,对造成数据拥堵的服务进行降级.
支持数据的读写分离.读请求和写请求分别访问不同的数据库.
支持分库分表,或引入数据库中间件,如慧巧悉Mycat.
硬件方面优化
尽量使用SSD磁盘类型的数据库服务器,相比传统机械硬盘类型的服务器,具有更高的IO吞吐能力.
如果可能,尽量保证系统与数据库,数据库各个机器在同一区域内.避免如系统服务在北京,数据库服务器在上海的情况,减少因为网络环境,网络带宽等因素带来的影响
Ⅹ 数据库性能优化有哪些措施
1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。
4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广激扰泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究拦行和决策管理的重要技术手段。
在经济管理的日常工作简铅哗中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
(10)如何保证数据库性能扩展阅读
数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。