① 现在常用的数据库系统都有哪些
mysql、oracle、sqlserver、db2这是目前最流行的四大数据库。如果作为一般用的话,只要学会一些基本的数据库增删改查语句就可以了。
② 智能交通系统的新技术
智能交通系统的安防新技术不断涌现和应用,新技术的出现对于高速公路领域有着较强的针对性。如3G无线传输是针对高速公路恶劣的气候、地理环境所采用的独特方式。高速公路移动无线监控,一般应用在高速公路的某一段内。巡逻车可以实时将巡逻时的视频情况传回高速公路管理中心,加强了智能交通系统管理的实时性。此外,其他新技术的应用更大程度上也都为系统管理的高效提供了进一步的支持。移动卡口系统: 采用计算机视觉仿真、雷达测速、智能图像分析以及数据库管理等技术的超速抓拍系统。能够精确测量车辆行驶速度,一旦超速,系统会自动抓拍图片,清晰捕捉车辆全貌、车牌号码、车辆类型、车身颜色等元素,将图片保存在数据库中,并叠加超速违法所发生的日期、时间、路段、违法时车辆实际行驶速度以及该路段的限定行驶速度等信息,数据库可按日期、车牌号码等条件进行分类查询,也可通过打印机实时输出违法车辆照片,具有车牌自动识别、现场报警、移动存储及综合管理等功能,其网络版的产品构架,使得该系统集现场执法、3G远程传输和指挥中心网络化调度管理于一体,为高速管理部门科学执法提供可靠的依据,充分符合科技强警战略;GPS定位:对出警车辆进行GPS定位,方便进行调度,以快速处理交通事故。车辆缉查发布系统:卡口对车辆进行超速抓拍并对比黑车牌,发现报警后在收费站或前端LED屏实时显示违章车辆信息,并在收费站进行拦截。另外,GIS从空间上、时间上彻底了解高速公路沿线情况的现状与变化,奠定高速公路管理所需要的数字基础,完成对静态交通信息(收费站、服务区、隧道、无线视频等基础设备)和动态交通信息(天气变化、道路维修封闭、突发的交通肇事等路面状况)的重组,为高速公路管理提供直观、系统、科学的管理工具;同时可以规范管理数据,实现信息共享,便于各部门数据的交换,改进和完善高速公路管理工作。按各子系统的要求,以规定的格式向子系统传输所需信息,比如无线通讯终端的应用(如手机短信、PDA等)根据服务请求和查询权限提供给客户数据、图形或图像等信息 。
③ 常见的数据库管理系统有哪些
IBM 的DB2作为关系数据库领域的开拓者和领航人,IBM在1977年完成了System R系统的原型,1980年开始提供集成的数据库服务器—— System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。
2. OracleOracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。
3. InformixInformix在1980年成立,目的是为Unix等开放操作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。
4. SybaseSybase公司的创始人之一Bob Epstein 是Ingres 大学版的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。
5. SQL Server1987 年,微软和IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 1.0 版。
④ 如题,想知道面对大数据的情况下,哪些数据库是比较常用的
目前市场上主要常用的数据库根据数据库应用类型的不同有时候区别。在关系数据库中,Oracle、MySQL/MariaDB、SQL Server、PostgrcSQL、 DB2等数据库应用较广泛。在时序数据库类型中,InfluxDB、RRDtool、Graphite等数据库也较为常见。其他类型数据库枝者可参考 http://db-engines.com/en/ranking网站排山搭辩名。
在国产数据库领域,亚信科技AntDB数据库在运营商的核心系统上⌄为全国24个省份的10亿多用户提供在线服务,现已广泛应用于通信,交逗缺通,金融,能源,邮政等多个行业。
⑤ 目前国内应用广泛的实时数据库有哪些
国内有自主知识产权的实时数据库有pSpace,由北京三维力控科技有限公司研发,目前在石油、天然气、煤矿、市政等有多个应用。
⑥ 互联网 大数据在智能交通上有哪些应用
之前有看过一篇有关商业智能在公交领域的文章,主要体现在公交的智能化信息管理方面
具体的应用如下:
(1)应用功能不能实现完全自动化。
(2)网络负载大,应用开发和维雀春护繁琐。
(3)由于系统存在功能不足,需要大量人手进行分析报表工作。
(4)系统本身的技术架构己经落后,不能满足用户不断提出的对数据应用虚宴的要求。
(5)近十年累积的改动和扩展,使到系统过于庞大,接口很多,多种技术和平台混合使用,应用和维护成本高。
(6)信息系统间共享数据的需求客观存在,但由于各系统的开发时间、开发工具、部门要求以及在数据库的选择等不同原因,分布在网络中的不同系统中的数据相互独立,无顷誉耐法实现真正的信息资源共享。
(7)每个信息系统都有私有的数据库,对于同一事物,可能在不同的系统中被赋予不同的意义,带来语义混乱。不同系统中存储格式存在差异,这些在综合处理时都会带来很大的麻烦同时,跨系统调用数据也会严重影响性能。
这是有关FineBI的应用,具体的你可以查一下
⑦ 智慧城市中的智能交通包括哪些内容
建立一系列的园区智能交通三维可视化管理平台,搭建了数据汇聚与信息共享的统一入口,架构了园区交通信息公共数据库,实现了与规划建设、公共交通、城市管理等部门的数据对接共享,数字化重构了园区路网,使园区交通进入全息感知时代。
1)机场运维管理可视化
包括机场3D全景、站坪监测、机位分析、场站雷达范围可视化等功能,帮助管理者掌控整体态势,保障机场的运行和管理。
2)航班运行进程可视化
以大兴机场为中心,展示了相关联的全国航班通航状态,对航班计划执行中的各要素支持可视化分析;为航班的安全运行提供了数据保障,航线规划效率得到提升;为机场进、离港排序和协助管理者提供管理决策支撑。
3)应急指挥调度
结合机场的航班流量变化和资源的利用情况进行数据化分析,可以实现机场航班的流量预测与飞机延误、高峰预报、大面积航班延误事件预警等突发事件的智能告警功能,为机场资源优化利用提供有利支撑。还可以协助各联动单位处置突发事件工作的开展,为管理者提供非常及时的正确的应急决策。
随着道路交通环境的日趋复杂,传统的路面没伍管控、事故压降手段已不能适应新形势的需求。转型升级落后的交通管理模式,向科技信息化要战斗力,是助推交通管理工作有效开展的必然要求。
智能交通系统提高了城市交通管理效率,节约了人力资源;有效缓解城市道路拥堵问题;降低了老察斗城市交通安全事故发生率,减少伤亡事件和经济损失,推进平安和谐城市的构建。
园区以建设全国一流智能交通工程为目标,以科技创新为动力,以服务实战为导向,以应用成效为追求,全力推动建设了高标准的“园区智能交通系统”,走出了一条符合辖区实际的道路交通管理智能之路。
⑧ 几种轨道交通仿真软件的特点与结构
运用计算机动态仿真手段,对轨道交通运营管理等进行仿真,从而指导车站设计和设施配置及运营优化,是轨道交通车站设计的新思路。国内外在这方面已具有较为成熟的经验,并开发了相关仿真工具,本文将介绍目前应用比较广泛的塌肢几种轨道交通仿真软件。 RailSysRailSys 是由德国汉诺威大学(University of Hannover)和德国铁路管理咨询公司(RMCon)共同研发团好世的基于路网的铁路运输微观模拟仿真系统。作为一款铁路基础设施及时刻表仿真、优化和管理软件,该系统适用于各种规模铁路网络的分析、设计和优化等。能够微观模拟至单个列车对某一股道的占用情况,可用于路网能力分析,新型信号安全技术研究和列车运行图的评价等。可以真实的呈现铁路路网全系统运行情况,对分析变化的运输需求对现有铁路运输系统的影响、基础设施的改扩建、信号系统的安全及可用性评价、列车时刻表的制定和优化等起到重要的辅助决策作用。 该系统目前在欧洲及世界范围铁路运输业得到了广泛应用,如科隆-莱茵、悉尼-堪培拉等高速铁路线,慕尼黑、科隆、悉尼、墨尔本的城市铁路以及柏林和哥本哈根的铁路网络等。 系统主要组件 RailSys 仿真系统主要包括6大组件:路网基础设施管理器、列车运行图(时刻表)管理器、仿真管理器、评估管理、占用计划管理器和列车调度管理器。 OPENTRACKOPENTRACK来源于本世纪90年代中期瑞士联邦研究院(Swiss Federal Institute of Technology)。该项目目的是在轨道交通应用中采用面向对象的思想开发一个拥有友好用户界面的软件工具来解决轨道运营仿真问题。今天,各国的轨道交通行业,轨道交通系统供应商,大型咨询公司和大学等都在使用OPENTRACK。 包括以下几部分 :路网的图形编辑器,列车属性编辑器,时刻表管理数据库,仿真,结果输出等。 路网图形编辑器对轨道网拓扑及与运营有关的信息进行编辑,如设定行车路线的起终点等。列车属性编辑器可以对列车的技术参数进行修改,如重量、长度、速度等。时刻表管理数据库包括到达和出发时刻、停站时间及列车编组信息。为了找出无冲突的时刻表,只有通过仿真程序来分析。同时,在仿真程序中还可以进行外部影响因素的敏感性分析,如额外的停站时间延误。整个仿真过程可以在计算机屏幕上通过动画演示。同时,控制方案也可以作为仿真的输入,以体现运营中人工干预的情形。 STRESI STRESI程序由德国亚琛的RWTH技术大学开发,内容包括:设备数据录入,列车数据录入,行驶时间和占用时间计算,仿真计算,输出等。STRESI仿真程序由于其应用范围仅限于复线的轨道线路,故相对较少被使用,但对于其特定的应用范围(复线),该程序能得出可靠的计算结果。 设备数据录入包括设备袜瞎数据和信号控制数据的输入和管理。一旦列车数据被录入,就可以计算相应的行驶时间和占用时间。可以对时刻表中的出发时刻 、发车频率进行定义;也可以分时段(如每小时)定义,甚至可以产生随机的时刻表。 RailPlan 德国VIT公司的RailPlan是一个基于列车牵引计算的仿真软件,它可以根据线路基础数据和列车牵引数据来模拟列车的运行。软件包括了列车延误分析,列车时刻表可靠性量化分析,非正常运行下运输能力的计算等功能。 RailPlanTM英国的RailPlanTM是一个基于线路与车站基础数据的运输组织仿真系统,它通过分析列车延误的概率和数量来测试出由于列车之间的相互作用而传递所造成的延误情况,从而对列车开行方案的可靠性进行了分析。 列车运行计算系统(GTMS) GTMS由北京交通大学与香港理工大学合作开发,能够提供各种条件下系统相关指标的自动计算,为工程咨询人员提供铁路工程项目新建或改造过程中的多方案比选结果,机车运行操作方案的优化,列车运行过程的动态演示等。 结束语使用仿真程序是对设施使用进行优化的基础,这使得仿真程序还要能计算相应的设施建设、运营维护费用以及收益水平和能力。此外,随着地区城际铁路的发展、地区城际铁路和城市轨道交通的一体化,轨道交通管理中不可避免地要对两个系统的运营进行统一考虑,这也是仿真程序所面临的新的挑战。
⑨ 常见的数据库应用系统有哪些
IBM 的DB2。
关系数据库领域的开拓者和领航人
Oracle
大型的数据库系统。
Informix
目的是为Unix等开放操作系统提供专业的关系型数据库产品。
Sybase
Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。
SQL Server
最初由微软和IBM合作开发完成OS/2。后微软同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库——SQL Server。
PostgreSQL
目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统。
mySQL
目前MySQL被广泛地应用在Internet上的中小型网站中。(开放源码、体积小、速度快、总体拥有成本低)
Access数据库
界面友好、易学易用、开发简单、接口灵活。
Access主要适用于中小型应用系统,或作为客户机/服务器系统中的客户端数据库。
⑩ 交通道路优化用GIS什么软件
公共交通与其它交通方式相比具有人均占用道路少、能源消耗低、运输成本低、污染相对较小、客运量大,运送效率高等优点,它是解决大、中城市交通拥堵等交通问题的有效方式之一已成为共识。随着智能交通系统(Intelligent Transportation System,简称ITS)这阵春风刮来,国内已经研制出许多以ITS为背景,运用通信技术、计算机网络技术、传感器技术、GPS、GIS等高科技手段的智能公交运营指挥调度系统[1],这些系统的产生及其运用极大地提高了公交的调度效率,改善了公交的服务水平。但是,由于受到已有技术上的限制,这些系统依然存在一些不尽如人意的地方,比如系统造价太高、对使用者知识水平要求过高、与老系统的兼容性不高等。如何优化这些系统,一直是研究智能公交系统的同仁共同努力的目标。万维网地理信息系统(WebGIS)出现,为我们探索建立低成本、智能化、人性化、高效率的智能公交运营指挥调度系统开辟了一条光明大道。
一、智能公交运营指挥调度系统
1、智能公交运营指挥调度系统的定义
智能公交运营指挥调度系统是一个集公交指挥调度、公交运营管理、综合业务通讯、乘客信息系统、动态信息发布、远程图文信息发布、网上交通信息查询,多媒体数据信息传输系统等于一体的全方位调度管理服务系凳谈袭统。
2、智能公交运营指挥调度系统的组成
一般来讲,智能公交运营指挥调度系统由监控调度中心、区域调度中心、车载单元、乘客信息系统、通信系统等几部分组成。各系统之间通过有线网络系统或无线移动通信系统组成一个有机整体。
二、万维网地理信息系统(WebGIS)
万维网地理信息系统(WebGIS)是指基于Internet平台、客户端应用软件采用WWW协议运行在万维网上的地理信息系统。它是利用互联网技术来扩展和完善地理信息系统的一项新技术,其核心是在地理信息系统中嵌入HTTP和TCP/IP标准的应用体系,实现互联网环境下的空间信息管理等地理信息功能。它是地理信息系统技术和互联网技术相结合产生的一种崭新的、革命性的新技术,使基于地图(图形、图像)的应用系统得以通过互联网技术在各行各业中得到广泛应用。
万维网地理信息系统(WebGIS)是当前GIS发展的主要方向,有着传统GIS无法比拟的优点。把作为GIS的首要发展方向的WebGIS用在智能公交运营指挥调度系统中是一种有益的尝试。
三、WebGIS在智能公交运营指挥调度系统中的应用
1、公共交通信息网上查询
公交信息查询服务子系统是智能公交运营指挥调度系统的重要组成部分。
1)公交信息查询服务子系统的功能设计
基于WebGIS公交信息查询服务子系统应包括如下功能:(1)交通电子地图的编辑显示功能,如放大、缩小、移动等;(2)公交信息查询,如某条公交线路的停靠站点、首、末班车时间、票价等;(3)提供最优路径查询,包括公交线路、换乘站点及换乘线路、经过站点等,并且查询结果可以以矢量图的形式予侍乱以显示;(4)公交线路变更情况说明和征求市民意见等。
2)公交信息查询服务子系统的技术实现方法
公交信息查询服务子系统由服务器端、客户端和Internet/Intranet网络等三部分组成(如图1)。服务器端建枣兄立在监控调度中心,由Web服务器(Web Server)、IMS服务器(Internet Mapping Server, 简称IMS)和空间数据库(Database)等三部分组成;客户端是连接在Internet/Intranet网络上的所有电脑;网络是已经存在的Internet/Intranet。目前IMS服务器开发平台有美国ESRI的ArcIMS、加拿大VTT公司的VTT WebGIS、我国超图公司的SuperMap I5.NET5等可供选用。
服务器端WebGIS应用软件的开发可以利用ActiveX技术或Java Applet技术,将具有GIS功能的组件嵌入用户自己开发的应用程序中,用集成二次开发方式设计实现。这种开发方式将计算在客户端和服务器端作了个较为均衡和合理的分配,客户端在浏览WebGIS网页时一次性下载一个ActiveX控件或Java Applet小程序,实现诸如地图缩放、平移、测量、最优路径分析、图层叠加和专题地图生成等GIS功能,承担部分力所能及的计算负载,使系统具有很好的灵活性和可扩展能力。
客户端有HTML viewer和Java viewer两种。HTML viewer是一个轻量级的客户端,不支持一些GIS功能,但它支持最广泛的浏览器并有着高度的可定制性。Java viewer可以根据需要定制一些GIS功能,包含丰富的GIS工具。用户在查询公交信息时,只要从服务器端下载一个ActiveX控件或Java Applet小程序,就可以进行正常查询了。现阶段成熟的IMS都有这个的功能。
监控调度中心把城市电子地图、公交线网、公交站点、公交时刻表等公交相关信息发布到IMS服务器上,用XML(eXtended Markup Language,简称XML)编辑器创建地图配置文件。该地图配置文件是用XML写的。然后使用IMS服务器开发平台自带的服务发布工具把地图服务在服务器上发布为地图服务。当客户想查询信息时,只要输入相应的查询信息或在电子地图上直接点击相应的图形图像,该信息在客户端生成XML格式的请求,并传送给服务器。如果服务器收到一个来自客户端的XML格式的请求,空间服务器会生成一个XML格式的响应,同时地图服务通过一种或两种方式把地图和相关信息发送到客户端:用图像的方式或矢量流的方式。
2、公交车辆的自动监控和调度
公交车辆监控调度子系统是智能公交运营指挥调度系统的主要组成部分之一。当前随着基于Internet/Intranet的Web GIS和GPRS通信技术等一批新技术登上应用舞台,综合应用这些技术手段,构建一个高效、大容量、易扩展的现代的GPS公交车辆定位导航调度系统就成为可能。
1)系统功能设计
基于WebGIS的公交车辆监控调度子系统应该具有如下功能:(1)公交车辆的定位;(2)中心与公交车辆之间的双向通信;(3)随时向车辆发送调度指令;(4)向乘客信息系统发送交通信息等。
2)系统的技术实现方法
该系统在逻辑上主要由GPS定位系统、GPRS移动通信网和Internet/Intranet网络、WebGIS信息管理调度系统有机组合而成。而在物理上,(如图2),则主要由基于惯性原理的GPS/DR车载定位仪、GPRS通信网、车辆监控调度中心(Web Server)、信息发布终端4部分构成。运行时,车辆定位调度系统将车载GPS/DR数据,经由通信控制器、GPRS模块以及自定义的GPRS通信应用层协议接口,由GPRS网络发送到监控中心的Web Server服务器端,显示在电子地图上;控制中心由监控调度中心的主服务器和分布在各服务区的区域调度中心的子服务器共同构成,形成分布式管理调度网络。控制中心通过GPRS公用网提供的各项服务,在将调度信息发送到车载平台的同时,还可以利用GPRS和Internet/Intranet,将导航地理信息发送到各类信息发布终端。
基于GPRS/Internet/Intranet通信平台的分布式GIS系统,让用户可以利用各种终端,如普通PC、支持无线Internet/Intranet访问的 PDA和嵌入式设备,以无线或有线的方式访问GIS服务器获得地图数据和车辆状态信息。工作时,由数据通信服务器完成监控中心和客户端之间数据流的接收和发送,并对数据作分类预处理,即直接输入车辆属性信息数据库或实时转发给客户端;数据库服务器支持空间地理信息和属性数据库;信息发布Web服务器通过Web C/S和 B/S方式支持客户端数据访问服务。
四、总体评价
作为智能运输系统(ITS)的重要组成部分,智能公交运营指挥调度系统既自成体系,又需要和ITS其它子系统之间相互联系,共享信息(这些信息为文本、图像、声音、视频等格式)。而这些信息数据量大,实时性高,并且分布于不同系统的局域网上。这个问题,必须通过高科技手段来科学地解决。同时,作为直接面向人民大众的窗口服务系统,智能公交运营指挥调度系统面向普通老百姓的界面又必须简单易懂、容易操作。目前北京、上海、杭州、青岛等一些大城市也在试用一些智能公交运营指挥调度系统。这些系统对于提高公交调度的效率、改善公交的服务水平都产生了巨大的作用,但是这些系统由于技术上的限制,对于系统内部信息共享、和其它系统之间的信息共享、面向Internet/Intranet的公交信息实时发布等方面依然存在一些不足。表现在:(1)系统与城市交通信息中心及其它诸如市政管理系统等其它信息系统之间的信息共享通路不畅通,无法做到公交调度的实时调整和公交相关信息的实时发布;(2)由于系统软硬件的差异,很难与现存的交通管理系统、交通信息发布系统等系统的融合,违背了一次规划分步实现建设ITS的初衷;(3)系统内部各部门之间共享信息通路不畅,无法很好地满足实时公交调度的需求;(4)乘客信息系统存在提供的信息实时性差,查询界面不人性化,可供查询的信息较少,查询系统响应速度慢,对用户自身的要求较高等不足。
WebGIS是Internet网络和传统地理信息系统有机结合的技术,不仅包含了传统Internet网络和地理信息系统技术的全部性能,而且还具备了它们二者所不具备的优点。基于WebGIS的智能公交运营指挥调度系统很好地解决上述问题,具有如下优点:
1、系统的信息共享能力更强
WebGIS的数据整合可以打破空间数据固有的界限,将空间数据与其他各种类型的数据融合在一起,为应用提供统一的数据存取模式,从而为空间数据共享、综合和知识发现提供更大的方便。在Internet这个开放的、分布的、全球性的信息基础平台上,以Open GIS的标准为参考,重构GIS软件的体系结构而形成的WebGIS具有开放性、兼容性、易拓展性、数据更新快等特点。
首先,可以充分利用已有的GIS数据资源,将常用的多种数据转换成自己的空间格式和相应的关系数据库。利用现有Internet/Intranet的基础设施和老的调度系统,以较少的投资就可以建立一套覆盖整个城市范围的系统。保护了先期投资。
其次,可以综合利用Internet上的各种信息。智能公交运营指挥调度系统所需要的ITS的其它子系统的各种信息不必全部集中到一个系统上来,而是按照其来源分布于各系统之中。只要通过Internet/Intranet相联,智能公交运营指挥调度系统就可以方便地实时地运用这些数据。大大地降低系统负载,加快访问速度。在公交调度过程中,控制中心需要根据得到的实时信息和历史资料权衡比较,才会形成一个调度方案,而这些信息来自多个部门系统。比如道路交通情报来自交通管理信息中心,道路维护信息来自市政部门,天气状况来自气象部门等。及时动态获得各种信息是能够进行实时调度的关键。
再次,运用WebGIS技术,监控调度系统分布在各个区域的子服务器和监控中心的主服务器共享主服务器上的GIS软件,不需每个子服务器都安装GIS软件。做到合理分工,各司其职。降低了成本。公交运行过程中,客流变化情况、车辆运行状况和其它相关信息汇聚于监控调度中心,而各路车辆的实际调度由分布在城市各个角落的区域调度中心负责。区域调度中心只要访问监控中心的服务器,调用自己需要的数据,运用WebGIS提供的GIS分析功能,进行相应的分析计算和发布指令,就可完成调度任务。
2、网络信息查询速度更快,范围更广,查询界面更人性化
由于该系统是在Internet/Intranet信息发布、数据共享、交流协作基础之上实现GIS的在线查询和业务处理等功能,运用了分布式并行计算和多线程并行计算技术。WebGIS可以避开繁忙的Web服务器,直接利用JAVA提供的URL对象访问网络上的各种交通信息,其访问方式就如同访问本地文件系统一样。WebGIS分布式的体系结构在客户端和服务器端都能提供活跃的、可执行进程,能够有效地平衡两者之间的处理负载,最大限度地发挥了现有计算机软硬件资源的利用率。同时,多线程并行计算技术为I/O吞吐、查询计算、图形刷新和用户界面等操作赋予不同的线程优先级别,支持高度并发性的访问方式。这两种技术的运用大大地加快了用户查询计算的等待时间,方便了运用,保证了系统的安全性。
运用标准的Internet浏览器作为用户使用界面和工具。基于WebGIS公交运营指挥调度系统查询子系统不仅提供传统的文字信息的查询,更重要的是它提供了图文交互的“傻瓜式”查询模式,直接以电子地图为操作对象,辅以少量的文字界面。不仅可以查到相应的公交车路线、换乘站点、公交线路走向等基本公交信息,而且具有最短路径分析、公交车运行现状查看、自动生成出行计划或方案等高级计算查询功能。无论用哪种方法查询,查询结果都在电子地图上显示出来,并有相应的文字说明,简单易懂。真正地达到了为最广大的市民服务的目的。
随着我国经济的快速健康地发展,高新技术、先进的管理经验和调度手段的广泛应用,城市公交系统必将逐渐实现信息化、智能化,公交服务质量将大大改善、公交竞争力将大大增强。把作为GIS的首要发展方向的WebGIS用在智能公交运营指挥调度系统中是一种有益的尝试。它不仅可以加强公交调度系统的功能,使其能够满足人们日益寄予厚望的城市公共交通的需求,而且有利于现有交通地理信息和城市管理信息各子系统的融合,加快了智能运输系统的发展,为智能运输系统的建设提供的了一个开放的平台。