A. 大数据挖掘常用的算法有哪些
1、预测建模:将已有数据和模型用于对未知变量的语言。
分类,用于预测离散的目标变量。
回归,用于预测连续的目标变量。
2、聚类分析:发现紧密相关的观测值组群,使得与属于不同簇的观测值相比,属于同一簇的观测值相互之间尽可能类似。
3、关联分析(又称关系模式):反映一个事物与其他事物之间的相互依存性和关联性。用来发现描述数据中强关联特征的模式。
4、异常检测:识别其特征显着不同于其他数据的观测值。
有时也把数据挖掘分为:分类,回归,聚类,关联分析。
B. 大数据分析的基本方法有哪些
1.可视化分析
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. 数据挖掘算法
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. 预测性分析能力
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. 语义引擎
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. 数据质量和数据管理
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
C. 大数据算法有哪些
大数据是一个很广的概念,并没有大数据算法这种东西,您估计想问的是大数据挖掘的算法:
1.朴素贝叶斯
超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. 回归
LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型(使用在线梯度下降法)。
3.决策树
DT容易理解与解释。DT是非参数的,所以你不需要担心野点和数据是否线性可分的问题,此外,RF在很多分类问题中经常表现得最好,且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法。
4.支持向量机
很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。
想要了解更多有关数据挖掘的信息,可以了解一下CDA数据分析师的课程。大数据分析师现在有专业的国际认证证书了, “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。全球 CDA 持证者秉承着先进商业数据分析的新理念,遵循着《CDA 数据分析师职业道德和行为准则》新规范,发 挥着自身数据科学专业能力,推动科技创新进步,助力经济持续发展。点击预约免费试听课。
D. 电子商务行业大数据分析采用的算法及模型有哪些
第一、RFM模型通过了解在网站有过购买行为的客户,通过分析客户的购买行为来描述客户的价值,就是时间、频率、金额等几个方面继续进行客户区分,通过这个模型进行的数据分析,网站可以区别自己各个级别的会员、铁牌会员、铜牌会员还是金牌会员就是这样区分出来的。同时对于一些长时间都没有购买行为的客户,可以对他们进行一些针对性的营销活动,激活这些休眠客户。使用RFM模型只要根据三个不同的变量进行分组就可以实现会员区分。
第二、RFM模型
这个应该是属于数据挖掘工具的一种,属于关联性分析的一种,就可以看出哪两种商品是有关联性的,例如衣服和裤子等搭配穿法,通过Apriori算法,就可以得出两个商品之间的关联系,这可以确定商品的陈列等因素,也可以对客户的购买经历进行组套销售。
第三、Spss分析
主要是针对营销活动中的精细化分析,让针对客户的营销活动更加有针对性,也可以对数据库当中的客户购买过的商品进行分析,例如哪些客户同时购买过这些商品,特别是针对现在电子商务的细分越来越精细,在精细化营销上做好分析,对于企业的营销效果有很大的好处。
第四、网站分析
访问量、页面停留等等数据,都是重要的流量指标,进行网站数据分析的时候,流量以及转化率也是衡量工作情况的方式之一,对通过这个指标来了解其他数据的变化也至关重要。
E. 请问大数据的关键技术有哪些
分布式计算,非结构化数据库,分类、聚类等算法。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
(5)大数据算法中有哪些扩展阅读:
大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
F. 需要掌握哪些大数据算法
不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1.C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2)在树构造过程中进行剪枝;
3)能够完成对连续属性的离散化处理;
4)能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2.Thek-meansalgorithm即K-Means算法
k-meansalgorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k 3.Supportvectormachines
支持向量机,英文为SupportVectorMachine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。vanderWalt和Barnard将支持向量机和其他分类器进行了比较。
4.TheApriorialgorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5.最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。
6.PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7.AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8.kNN:k-nearestneighborclassification
K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9.NaiveBayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(DecisionTreeModel)和朴素贝叶斯模型(NaiveBayesianModel,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
10.CART:分类与回归树
CART,。在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。
G. 大数据挖掘方法有哪些
谢邀。
大数据挖掘的方法:
神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。