㈠ 如何进行数据分析及处理
1.数据集成:构建聚合的数据仓库
将客户需要的数据通过网络爬虫、结构化数据、本地数据、物联网设备、人工录入等进行全位实时的汇总采集,为企业构建自由独立的数据库。消除了客户数据获取不充分,不及时的问题。目的是将客户生产、运营中所需要的数据进行收集存储。
2.数据管理:建立一个强大的数据湖
将数据库中的数据经过抽取、清洗、转换将分散、零乱、标准不统一的数据整合到一起,通过在分析数据库中建模数据来提高查询性能。合并来自多个来源的数据,构建复杂的连接和聚合,以创建数据的可视化图标使用户能更直观获得数据价值。为内部商业智能系统提供动力,为您的业务提供有价值的见解。
3.数据应用:将数据产品化
将数据湖中的数据,根据客户所处的行业背景、需求、用户体验等角度将数据真正的应用化起来生成有价值的应用服务客户的商务办公中。将数据真正做到资产化的运作。
㈡ App的数据分析怎么做
首先要充分了解你的APP的设计,列出其核心操作,比如启动,付费等等,当然这两个是比较通用的,其它的操作就是每个APP特有的了。
1. 首先基本的统计要有:
指标:总用户数,新用户数,N日留存数据,日活跃(DAU),周活跃(WAU),月活跃(MAU),付费人数,付费率,付费点分布,核心动作的转化率(比如新手引导);
作用:活跃数据可以反映APP的热度,而留存数据可以看出此APP的用户黏度,付费数据(如果有)就是考察付费点设置是否合理。
这个过程就是通过数据为应用建模
2. A/B测试。最好有专门这样一个系统用来测试调整APP,这样才能让分析真正反馈到优化APP设计上,而整个数据形成一个闭环,有了这个反馈环,数据分析才能越来越强大。
3. 大付费额度用户的专门分析。也可以说是VIP系统,分析与追踪这些用户的行为特点,基本上这属于一个客户关系维系系统。
4.
知识库。单个APP的用户分析价值有限,如果综合多个APP的数据,形成一个针对用户的标签库,这样对于APP产品运哪衡营来说就更有针对性了。最简单的举个
例子,如果知识库中说一个用户已经在近期付费了10000人民币,而在雀升此APP中却没有付费行为,如果这样的数据多了,就可以顷缓老看到自己的产品是不是能够吸
引到高质量的用户。当然,这个库对于广告的针对性投放也非常有价值。
㈢ 电商如何做数据分析
分中旦戚析好自己产品和竞品的数据,最近在用卖陵的工具迟迅,看图
㈣ 为什么要做APP数据分析
①搭建数据运营分析框架一个APP的构建与运营工作通常由多个角色分工实现,由于大家的工作重点不同,仅关注一个方面的数据就如同管中窥豹,无法全面了解产品运营情况,不能提出行之有效的分析建议。因此,只有搭建完善的数据运营分析框架,才能全面的衡量移动应用产品运营情况。除此之外,完整的数据运营分析框架还可以让产品经理和开发者不仅知道产品运营的基本状况和使用状况,更了解用户到底是谁,深入发现用户的需求。
②用数据推动产品迭代和市场推广
基础的数据运营分析框架对公司产品的整体发展状况会有一个很好的展现,但是创业者会关注更加细节的部分。
产品设计人员可以有针对性的对产品使用情况进行数据分析,了解用户对不同功能的使用,行为特征和使用反馈,这样可以为产品的改进提供很好的方向。
市场推广人员也不应该仅仅关注“什么渠道带来了多少用户”,更应该关注的是哪一个渠道带来的用户质量更高一些。
③产品盈利推手
盈利是公司的最终目的,无论一款产品是否已经探索出一个成熟的商业模式,创业者都应该借助数据让产品的盈利有一个更好进程。在产品商业的路上,数据可以帮助企业完成两件事:①发现产品盈利的关键路径;②优化现有的盈利模式。
㈤ 如何进行网店数据分析
网店数据分析有两种,分析市场和分析网站记录:
目前这两类大数据分析工具或平台都有,你可以自己选择
㈥ 市场数据分析怎么做
1.明确目的和思路
首先明白本次的目的,梳理分析思路,并搭建整体分析框架,把分析目的分解,化为若干的点,清晰明了,即分析的目的,用户什么样的,如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。
2.数据收集
根据目的和需求,对数据分析的整体流程梳理,找到自己的数据源,进行数据分析,一般数据来源于四种方式:数据库、第三方数据统计工具、专业的调研机构的统计年鉴或报告(如艾瑞资讯)、市场调查。
3.数据处理
数据收集就会有各种各样的数据,有些是有效的有些是无用的,这时候我们就要根据目的,对数据进行处理,处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法,将各种原始数据加工成为产品经理需要的直观的可看数据。
4.数据分析
数据处理好之后,就要进行数据分析,数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。
5.数据展现
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。
6.报告撰写
撰写报告一定要图文结合,清晰明了,框架一定要清楚,能够让阅读者读懂才行。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
㈦ 工作中如何进行数据分析---用数据来发现问题和机会
数据分析怎么做?做一份数据分析前必须明白数据分析遵循的原则,然后按照常规数据分析步骤进行。
1、数据分析遵循的原则:
① 数据分析为了验证假设的问题,提供必要的数据验证;
② 数据分析为了挖掘更多的问题,并找到原因;
③ 不能为了做数据分析而坐数据分析。
2、步骤:
① 调查研究:收集、分析、挖掘数据
② 图表分析:分析、挖掘的结果做成图表
3、常用方法:
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。
① 分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
② 回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。
③ 聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。聚类分析的方法可以学习CPDA数据分析的课程。
④ 关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
⑤ 特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。
⑥ 变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。
⑦验证假设和结果的关系。数据分析的结果是不是合理,是不是符合逻辑要求,是不是和假设的原因一致,为什么会有结果和假设不相符合的,这些都是最后的报告听取者可能问的问题,同时也是进行数据分析得到的问题的症结所在。
㈧ 市场调研和数据分析的方式和方法
市场调研和数据分析的方式和方法
一、产品经理为什么要做市场调研?调研的目的是什么?我们在做市场调研前,必须有一个自己的调研思路:我们要调研的对象,需要收集的数据,需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。 1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订MRD; 2、为领导在会议上PK提供论据; 3、提高产品的销售决策质量、解决存在于产品销售中的问题或寻找机会等而系统地、客观地识别、收集、分析和传播营销信息,及时掌握一手资源; 4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务; 5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求; 6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路; 7、调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等; 8、对于全新的产品,调研前PM必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。 二、市场调研的方式方法有哪些?怎样确定调研的维度? 1、问卷调查、用户AB测试、焦点访谈、田野调研、用户访谈、用户日志、入户观察、网上有奖调查; 2、做人物角色分析:设置用户场景、用户角色进行模拟分析; 3、情况推测分析; 4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度) 三、如何整理市场调研的数据? 对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。 通过市场调研,我们收集了不少的数据,这些数据都是用户最直接的对产品的某种需求的体现。作为产品经理,我们视这些数据为宝贝,我们需要将这些数据进行整理,让他们变为珍宝。那我们该如何整理呢? 1、将规范的数据按照维度整理、录入,然后进行建模;不规范的数据的话就必须得自己先通过一些定性的处理,让它变得规范,然后再用工具进行分析; 2、封闭性的问题,设置选项归类即可。开放性的问题,建议还是先录下来,然后再头脑风暴整理出有用的东西; 3定性的,焦点访谈和深访,都可以录音,在事后可以形成访谈记录;焦点访谈的过程中,可以以卡片的形式或者其他的形式让用户做选择题,可以获取少量的有数据性的东西,其他的更多的是观点、方向性的,这个需要在整理访谈记录的时候根据问题来归纳整理; 4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。 四、如何书写市场调研报告? 对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的BOSS,从而获得老板对产品的支持。 1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现; 2、分析用户当前现状,用户对产品的需求点;
以上是小编为大家分享的关于市场调研和数据分析的方式和方法的相关内容,更多信息可以关注环球青藤分享更多干货
㈨ 如何对APP进行数据分析
①日常数据运营指标的监控日常数据运营指标,如下载用户数、新增用户数、活跃用户数、付费用户数等,这些数据都是运营中最基础最基本的数据,是大Boss们最关注的核心指标。
②渠道分析
对于一个上升期或者衰退期的APP,运营团队会尽可能寻找大量的渠道来引流,吸引新用户的关注。互联网的渠道很多,通常有竞价渠道(网络、搜狗、应用商店)、SEO渠道(网络、搜狗)、新媒体渠道(微信公众号、微博、抖音)、网盟广告渠道(网络网盟、阿里妈妈)、移动端付费渠道(今日头条、腾讯广点通)、免费渠道(QQ群、微信群、贴吧、问答平台、应用商店)、直播平台(虎牙直播、映客)等。
③活跃用户分析
一个产品不可能满足所有用户,鱼和熊掌不可兼得,用户之所以成为了活跃用户,必然是产品已经满足了一定的用户需求。活跃用户分析中,反映粘性和活性的指标,都值得细致研究。
④用户画像分析
用户画像其实就是用户信息的标签化。如性别、年龄、手机晌困型号、网络型号、职业收入、兴趣偏好等等。用户画像分析的核心工作就是给用户打标签,通过人制定的标签规则,给用户打上标签,使得能够通过标签快速读出其中的信息,最终做标签的提取和聚合,形成用户画像。
⑤产品核心功能转化分析
当用户向您业务价值点方向进行了一次操作,就产生了一次转化。这里的业务价值点包括但不限于完成注册、下载、购买等行为。在互联网产品和运营的分析领域中,转化分析是最为核心和关键的场景。
⑥用户流失分枣埋析
流失用户召回是运营工作中的重要部分,定义流失用户是用户流失分析的起点。用户流失是一个过程不是一个节点,流失用户在正式停止使用产品之前会表现出一些异常行为宴岩念特征:访问频次大幅降低,在线时长大幅下降,交互频率大幅降低等。
⑦用户生命周期分析
在APP用户的整个生命周期中,从用户价值贡献的角度可以分为4个不同的时期,分别是考察期、形成期、稳定期和衰退期。每个时期的用户给APP带来不同的价值。
㈩ 小程序商城的数据报表怎么做
商家通过翼码开通小程序商城,有完整的数据看板,包括商城/单品转化漏斗分析、商城用户画像输出、新用户订单转化分析、周期性的活动报表、订单结算数据报表、导购业绩排 行榜、导购分佣结算报表等等。