导航:首页 > 数据处理 > 大数据规模性是什么意思

大数据规模性是什么意思

发布时间:2023-03-16 23:01:27

A. 大数据是什么多大的数据叫大数据

大数据是什么?
在很多人的眼里大数据可能是一个很模糊的概念,但是,在日常生活中大数据有离我们很近,我们无时无刻不再享受着大数据所给我们带来的便利,个性化,人性化。全面的了解大数据我们应该从四个方面简单了解。定义,结构特点,我们身边有哪些大数据,大数据带来了什么,这四个方面了解。
那么“大数据”到底是什么呢?

在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB ,1PB=1024GB才足以称为大数据。

B. 大数据的4v特征

“大数据的4v特征主要包含规模性(Volume)、多样性(Variety)、高速性(Velocity)、价值性(Value)”

大数顷渣段据是指规模巨大、复杂度高、处理速度快的数据集合。这些数据集合通常无法使用传统梁仿的数据处理方法和工具进行处理和分析。

大数据的处理和分雀誉析需要使用大数据技术,包括分布式存储、分布式计算、机器学习、数据挖掘等技术。大数据可以用于各种领域,如金融、医疗、电商、物流等,为企业提供了更精准的决策和更高效的业务流程。



C. 大数据的特征包括哪些

1、规模性


随着信息化技术的高速发展,数据开始爆发性增长。大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。


2、多样性


多样性主要体现在数据来源多、数据类型多和数据之间关联性强这三个方面。


数据来源多,企业所面对的传统数据主要是交易数据,而互联网和物联网的发展,带来了诸如社交网站、传感器等多种来源的数据。


而由于数据来源于不同的应用系统和不同的设备,决定了大数据形式的多样性。大体可以分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。


数据类型多,并且以非结构化数据为主。传统的企业中,数据都是以表格的形式保存。而大数据中有70%-85%的数据是如图片、音频、视频、网络日志、链接信息等非结构化和半结构化的数据。


数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。


3、高速性


这是大数据区分于传统数据挖掘最显着的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。


4、价值性


尽管企业拥有大量数据,但是发挥价值的仅是其中非常小的部分。大数据背后潜藏的价值巨大。由于大数据中有价值的数据所占比例很小,而大数据真正的价值体现在从大量不相关的各种类型的数据中。挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,并运用于农业、金融、医疗等各个领域,以期创造更大的价值。

D. 大数据的内容是什么

问题一:大数据都包括什么内容? 你好,
第一,你可以直接网络搜索。
第二,根据我的理解,所有你在互联网上留下的痕迹就是大数据。
比如很多购物网站,会根据你以前的购买记录,在你再次到该网站的时候,在页面底部出现“猜你喜欢”,推荐几个你可能喜欢的东西。比如淘宝、天猫、京东这些购物网站。
有时候,还会定期发邮件给你,推荐你一些商品,比如做的比较好的,像亚马逊。
希望能对你有所帮助,有什么问题我们可以继续交流

问题二:什么是大数据?大数据是什么意思? “大数据”是近年来IT行业的悄悄拿热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么启搭,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶运亏牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。
大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 *** ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管......>>

问题三:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的......>>

问题四:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显着的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。

问题五:大数据到底是什么东西? 基于大数据→企业网上支付与结算
基于大数据→银行的融资参考依据
基于大数据→优化库存周转
基于大数据→按需按量按地定产,高效自营

问题六:大数据时代:大数据是什么? 大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据 *** 的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)......>>

问题七:大数据是什么,干什么用的?包含哪些内容?哪些技术?解决什么问题? 大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。通过大数据分析,可以预测交通路况实况,比如网络地图的实时公交,了解客户信用,比如支付宝实名认证大数据背后的花呗借呗信用积累大数据研究显示,我国的数据总量正在以年均50%以上的速度持续增长,预计到2020年在全球的占比将达到21%。产业新形态不断出现,催生了个性化定制、智慧医疗、智能交通等一大批新技术新应用新业态。大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。

问题八:大数据可以做什么 用处太多了
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提 *** 品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,网络的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。

问题九:大数据的内容和基本含义? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。
1、大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。
3、大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
4、大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
5、大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。
6、大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。

问题十:大数据具体学习内容是啥? HADOOPP 是一个能够对大量数据进行分布式处理的软件框架。但是HADOOPP 是以一种可靠、高效、可伸缩的方式进行处理的。HADOOPP 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。HPCC高性能计算与 通信”的报告。开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理HADOOPP的批量数据。为了帮助企业用户寻找更为有效、加快HADOOPP数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。IT JOB

E. 大数据的基本概念

随着计算机皮闭中技术的发展,互联网的普及,信息的积累已经到了一个非常庞大的地燃山步,信息的增长态察也在不断的加快,随着互联网、物联网建设的加快,信息更是爆炸是增长,收集、检索、统计这些信息越发困难,必须使用新的技术来解决这些问题
大数据的定义
–大数据由巨型数据集组成,这些数据集大小常超出人类在可接受时间下的收集、庋用、管理和处理能力。
大数据能做什么?
把数据集合开后进行分析可得出许多额外的信息和数据关系性,可用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪戒测定即时交通路况等;这样的用途正是大型数据集盛行的原因

大数据的定义
–大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

F. 大数据含义是什么

问题一:什么是大数据?大数据是什么意思? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本桥裤专业的例子,比如在奶牛基因层面顷消友寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。
大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 *** ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、雀槐统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管......>>

问题二:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显着的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。

问题三:什么是“大数据”的真正含义 大讲台大数据 在线培训为你解答:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

问题四:大数据是什么含义? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。

问题五:大数据是什么意思 大数据是指整个分析运营的各个方面的数据整合。特别是指互联网带来的整个方方面的物流 信息流 资金流都在数据分析下整合
希望你能接受这个答案。

问题六:大数据是什么意思? 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的加工能力,通过加工实现数据的增值。

问题七:大数据的概念是什么意思 什么是大数据概念?
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《着云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

问题八:大数据的含义包括哪些 大数据(英语:Big data[1][2]或Megadata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
在总数据量相同的情况下,与个别分析独立的小型数据集(data
set)相比,将各个小型数据 *** 并后进行分析可得出许多额外的信息和数据关系性,可用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定实时交通路况等;这样的用途正是大型数据集盛行的原因。
大数据的应用示例包括大科学、RFID、感测设备网络、天文学、大气学、基因组学、生物学、大社会数据分析、互联网文件处理、制作互联网搜索引擎索引、通信记录明细、军事侦查、社交网络、通勤时间预测、医疗记录、照片图像和视频封存、大规模的电子商务等。

问题九:什么是大数据?有什么意义? 大数据就是大量的数据,通过分析找出他们的规律

问题十:什么是大数据,大数据的意义是什么? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。

G. 大数据和大规模数据的区别

big data之前学术界叫very large data,大数据和大规模数据的差距是什么?我认为在英文中large的含义只是体积上的,而big的含义还包含重量上的,价值量上的。因此我认为

1)大数据首先不是数量上的堆砌,而是具有很强的关联性结构性

比如有一种数据,记录了世界上每一颗大树每年长高的程度,这样的数据不具有价值,因为只是简单堆砌。

如果数据变成,每一个大树记录它的,地点,气候条件,树种,树龄,周边动植物生态,每年长高的高度,那么这个数据就具有了结构性。具有结构性的数据首先具有极强的研究价值,其次极强的商业价值。

在比如,淘宝的数据,如果只记录一个交易的买家,卖家,成交物品,价格等信息,那么这个商业价值就很有限。淘宝包含了,买家间的社交关系,购物前后的其他行为,那么这个数据将非常有价值。

因此,只有立体的,结构性强的数据,才能叫大数据,才有价值,否则只能叫大规模数据。

2)大数据的规模一定要大,而且比大规模数据的规模还要大

要做一些预测模型需要很多数据,训练语料,如果数据不够大,很多挖掘工作很难做,比如点击率预测。最直白的例子,如果你能知道一个用户的长期行踪数据,上网的行为,读操作和写操作。那么几乎可以对这个人进行非常精准的预测,各种推荐的工作都能做到很精准。

H. 大数据的内涵是什么

中国发展门户网讯 随着新一代信息技术的迅猛发展和深入应用,数据的数量、规模不断扩大,数据已日益成为土地、资本之后的又一种重要的生产要素,和各个国家和地区争夺的重要资源,谁掌握数据的主动权和主导权,谁就能赢得未来。奥巴马政府将数据定义为“未来的新石油”,认为一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,对数据的占有和控制将成为继陆权、海权、空权之外的另一个国家核心权力。此后,一个全新的概念——大数据开始风靡全球。
大数据的概念与内涵
“大数据”的概念早已有之,1980年着名未来学家阿尔文•托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。但是直到近几年,“大数据”才与“云计算”、“物联网”一道,成为互联网信息技术行业的流行词汇。2008年,在谷歌成立10周年之际, 着名的《自然》杂志出版了一期专刊,专门讨论未来的大数据处理相关的一系列技术问题和挑战,其中就提出了“Big Data”的概念。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 也抛出了Big Data概念。所以,很多人认为,2011年是大数据元年。
此后,诸多专家、机构从不同角度提出了对大数据理解。当然,由于大数据本身具有较强的抽象性,目前国际上尚没有一个统一公认的定义。维基网络认为大数据是超过当前现有的数据库系统或数据库管理工具处理能力,处理时间超过客户能容忍时间的大规模复杂数据集。全球排名第一的企业数据集成软件商Informatica认为大数据包括海量数据和复杂数据类型,其规模超过传统数据库系统进行管理和处理的能力。亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。网络搜索的定义为:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。互联网周刊的定义为:"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
综合上述不同的定义,我们认为,大数据至少应包括以下两个方面:一是数量巨大,二是无法使用传统工具处理。因此,大数据不是关于如何定义,最重要的是如何使用。它强调的不仅是数据的规模,更强调从海量数据中快速获得有价值信息和知识的能力。
大数据4V特征
一般认为,大数据主要具有以下四个方面的典型特征:规模性(Volume)、多样性(Varity)、高速性(Velocity)和价值性(Value),即所谓的“4V”。
1.规模性。大数据的特征首先就体现为“数量大”,存储单位从过去的GB到TB,直至PB、EB。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能终端等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.多样性。广泛的数据来源,决定了大数据形式的多样性。大数据大体可分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据问的因果关系弱。
3.高速性。与以往的档案、广播、报纸等传统数据载体不同,大数据的交换和传播是通过互联网、云计算等方式实现的,远比传统媒介的信息交换和传播速度快捷。大数据与海量数据的重要区别,除了大数据的数据规模更大以外,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
4.价值性。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
大数据六大发展趋势
虽然大数据目前仍处在发展的起步阶段,尚存在着诸多的困难与挑战,但我们相信,随着时间的推移,大数据未来的发展前景非常可观。
1.数据将呈现指数级增长
近年来,随着社交网络、移动互联、电子商务、互联网和云计算的兴起,音频、视频、图像、日志等各类数据正在以指数级增长。据有关资料显示,2011年,全球数据规模为1.8ZB,可以填满575亿个32GB的iPad,这些iPad可以在中国修建两座长城。到2020年,全球数据将达到40ZB,如果把它们全部存入蓝光光盘,这些光盘和424艘尼米兹号航母重量相当。美国互联网数据中心则指出,互联网上的数据每年将增长50%,每两年便将翻一番,目前世界上90%以上的数据是最近几年才产生的。
2.数据将成为最有价值的资源
在大数据时代,数据成为继土地、劳动、资本之后的新要素,构成企业未来发展的核心竞争力。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。IBM执行总裁罗睿兰认为指出,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”随着大数据应用的不断发展,我们有理由相信大数据将成为机构和企业的重要资产和争夺的焦点谷歌、苹果、亚马逊、阿里巴巴、腾讯等互联网巨头正在运用大数据力量获得商业上更大的成功,并且将会继续通过大数据来提升自己的竞争力。
3.大数据和传统行业智能融合
通过对大数据收集、整理、分析、挖掘, 我们不仅可以发现城市治理难题,掌握经济运行趋势,还能够驱动精确设计和精确生产模式,引领服务业的精确化和增值化,创造互动的创意产业新形态。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。网络、阿里、腾讯等通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。在智慧城市建设不断深入的情况下,大数据必将在智慧城市中发挥越来越重要的作用。由城市数字化到智慧城市,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术,大数据将成为智慧城市的核心智慧引擎。智慧金融、智慧安防、智慧医疗、智慧教育、智慧交通、智慧城管等,无不是大数据和传统产业融合的重要领域。
4.数据将越来越开放
大数据是人类的共同资源、共同财富,数据开放共享是不可逆转的历史潮流。随着各国政府和企业对开放数据带来的社会效益和商业价值认识的不断提升,全球必将很快掀起一股数据开放的热潮。事实上,大数据的发展需要全世界、全人类的共同协作,变私有大数据为公共大数据,最终实现私有、企业自有、行业自有的全球性大数据整合,才不至形成一个个毫无价值的“数据孤岛”。大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。目前,美欧等发达国家和地区的政府都在政府和公共事业上的数据做出了表率。中国政府也将一方面带头力促数据公开共享,另一方面,还通过推动建设各类大数据服务交易平台,为数据使用者提供丰富的数据来源和数据的应用。
5.大数据安全将日受重视
大数据在经济社会中应用日益广泛的同时,大数据的安全也必将受到更多的重视。大数据时代,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术最大限度地收集更多有用信息,对其感兴趣的目标发起更加“精准的”攻击。近年来,个人隐私、企业商业信息甚至是国家机密泄露事件时有发生。对此,美欧等发达国家纷纷制定完善了保护信息安全、防止隐私泄露等相关法律法规。可以预见,在不久的将来,其他国家也会迅速跟进,以更好地保障本国政府、企业乃至居民的数据安全。
6.大数据人才将备受欢迎
随着大数据的不断发展及其应用的日益广泛,包括大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等在内的具有丰富经验的数据分析人员将成为全社会稀缺的资源和各机构争夺的人才。据着名国际咨询公司Gartner预测,2015年全球大数据人才需求将达到440万人,而人才市场仅能够满足需求的三分之一。麦肯锡公司则预测美国到2018年需要深度数据分析人才44万—49万,缺口为14万—19万人。有鉴于此,美国通过国家科学基金会,鼓励研究性大学设立跨学科的学位项目,为培养下一代数据科学家和工程师做准备,并设立培训基金支持对大学生进行相关技术培训,召集各个学科的研究人员共同探讨大数据如何改变教育和学习等。英国、澳大利亚、法国等国家也类似地对大数据人才的培养做出专项部署。IBM 等企业也开始全面推进与高校在大数据领域的合作,力图培养企业发展需要的既懂业务知识又具分析技能的复合型数据人才。(武锋:国家信息中心)

I. 大数据的规模怎么样

大数据是一种规模大到在获取、管理、分析方面大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。如果将大数据比作一个产业,那么这种产业实现盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上来看,大数据和云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
云时代的来临,大数据的关注度也越来越高,分析师团队认为大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术以有效地处理大量的容忍经过时间内雹罩侍的数据。适用于大数据的技术,包括大规模的并行处理数据库、数据挖掘、分布式文件系统、分布式数据可、云计算平台、互联网和可扩展的存储系统。
现在已经进入了大数据时代,哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
物联网的发展离不开大数据,依靠大数据可以提供可靠的资源,同时大数据也推动了物联网的发展。举个例子:在汽车内闷吵连接传感器,并结合大数据和分析来预测,当一辆汽车有可能出故障之前,实际上已经发生。这一过程不仅会通知司机,而且他们的车辆可能在服务之前出故障,这可以支持汽车制造源吵商调查潜在的缺陷,并改进未来的车型。

阅读全文

与大数据规模性是什么意思相关的资料

热点内容
互联网代理怎么开广告公司 浏览:90
徐州市古玩市场哪个最大 浏览:815
产品外壳设计后怎么生产 浏览:472
饿了吗信息异常怎么能 浏览:404
高职学院怎么招聘技术型老师 浏览:381
扫码定位程序多少钱 浏览:985
分干线交易平台怎么样 浏览:948
提交省高院是什么程序 浏览:555
tr外汇如何交易操作 浏览:626
银惠通代理商编号是什么意思 浏览:10
国泰君安怎么交易etf 浏览:415
公司代理专利注册需要什么条件 浏览:74
肇庆信息技术考试怎么考 浏览:567
电商怎么产品 浏览:927
天地图怎么清除数据 浏览:410
雪佛兰公关代理公司做什么 浏览:862
神佑释放星种怎么交易 浏览:148
市场里怎么买到好的猪肉 浏览:46
电脑驱动程序都掉了怎么办 浏览:561
程序员为什么只想做码农 浏览:629