导航:首页 > 数据处理 > 大数据调试有哪些挑战

大数据调试有哪些挑战

发布时间:2023-03-13 14:30:41

大数据时代,面临的七个挑战和八大趋势

大数据时代,面临的七个挑战和八大趋势

大数据挑战和机遇并存,大数据在未来几年的发展将从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。未来的大数据发展依然存在诸多挑战,但前景依然非常乐观。

大数据发展的挑战

目前大数据的发展依然存在诸多挑战,包括七大方面的挑战:业务部门没有清晰的大数据需求导致数据资产逐渐流失;企业内部数据孤岛严重,导致数据价值不能充分挖掘;数据可用性低,数据质量差,导致数据无法利用;数据相关管理技术和架构落后,导致不具备大数据处理能力;数据安全能力和防范意识差,导致数据泄露;大数据人才缺乏导致大数据工作难以开展;大数据越开放越有价值,但缺乏大数据相关的政策法规,导致数据开放和隐私之间难以平衡,也难以更好的开放。

挑战一:业务部门没有清晰的大数据需求

很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。由于业务部门需求不清晰,大数据部门又是非盈利部门,企业决策层担心投入比较多的成本,导致了很多企业在搭建大数据部门时犹豫不决,或者很多企业都处于观望尝试的态度,从根本上影响了企业在大数据方向的发展,也阻碍了企业积累和挖掘自身的数据资产,甚至由于数据没有应用场景,删除很多有价值历史数据,导致企业数据资产流失。因此,这方面需要大数据从业者和专家一起,推动和分享大数据应用场景,让更多的业务人员了解大数据的价值。

挑战二:企业内部数据孤岛严重

企业启动大数据最重要的挑战是数据的碎片化。在很多企业中尤其是大型的企业,数据常常散落在不同部门,而且这些数据存在不同的数据仓库中,不同部门的数据技术也有可能不一样,这导致企业内部自己的数据都没法打通。如果不打通这些数据,大数据的价值则非常难挖掘。大数据需要不同数据的关联和整合才能更好的发挥理解客户和理解业务的优势。如何将不同部门的数据打通,并且实现技术和工具共享,才能更好的发挥企业大数据的价值。

挑战三:数据可用性低,数据质量差

很多中型以及大型企业,每时每刻也都在产生大量的数据,但很多企业在大数据的预处理阶段很不重视,导致数据处理很不规范。大数据预处理阶段需要抽取数据把数据转化为方便处理的数据类型,对数据进行清洗和去噪,以提取有效的数据等操作。甚至很多企业在数据的上报就出现很多不规范不合理的情况。以上种种原因,导致企业的数据的可用性差,数据质量差,数据不准确。而大数据的意义不仅仅是要收集规模庞大的数据信息,还有对收集到的数据进行很好的预处理处理,才有可能让数据分析和数据挖掘人员从可用性高的大数据中提取有价值的信息。Sybase的数据表明,高质量的数据的数据应用可以显着提升企业的商业表现,数据可用性提高10%,企业的业绩至少提升在10%以上。

挑战四:数据相关管理技术和架构

技术架构的挑战包含以下几方面:(1)传统的数据库部署不能处理TB级别的数据,快速增长的数据量超越了传统数据库的管理能力。如何构建分布式的数据仓库,并可以方便扩展大量的服务器成为很多传统企业的挑战;(2)很多企业采用传统的数据库技术,在设计的开始就没有考虑数据类别的多样性,尤其是对结构化数据、半结构化和非结构化数据的兼容;(3)传统企业的数据库,对数据处理时间要求不高,这些数据的统计结果往往滞后一天或两天才能统计出来。但大数据需要实时处理数据,进行分钟级甚至是秒级计算。传统的数据库架构师缺乏实时数据处理的能力;(4)海量的数据需要很好的网络架构,需要强大的数据中心来支撑,数据中心的运维工作也将成为挑战。如何在保证数据稳定、支持高并发的同时,减少服务器的低负载情况,成为海量数据中心运维的一个重点工作。

挑战五:数据安全

网络化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。如何保证用户的信息安全成为大数据时代非常重要的课题。在线数据越来越多,黑客犯罪的动机比以往都来的强烈,一些知名网站密码泄露、系统漏洞导致用户资料被盗等个人敏感信息泄露事件已经警醒我们,要加强大数据网络安全的建设。另外,大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制也提出更高的要求。目前很多传统企业的数据安全令人担忧。

挑战六:大数据人才缺乏

大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支掌握大数据技术、懂管理、有大数据应用经验的大数据建设专业队伍。目前大数据相关人才的欠缺将阻碍大数据市场发展。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。大数据的相关职位需要的是复合型人才,能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌控。未来,大数据将会出现约100万的人才缺口,在各个行业大数据中高端人才都会成为最炙手可热的人才,涵盖了大数据的数据开发工程师、大数据分析师、数据架构师、大数据后台开发工程师、算法工程师等多个方向。因此需要高校和企业共同努力去培养和挖掘。目前最大的问题是很多高校缺乏大数据,所以拥有大数据的企业应该与学校联合培养人才。

挑战七:数据开放与隐私的权衡

在大数据应用日益重要的今天,数据资源的开放共享已经成为在数据大战中保持优势的关键。商业数据和个人数据的共享应用,不仅能促进相关产业的发展,也能给我们的生活带来巨大的便利。由于政府、企业和行业信息化系统建设往往缺少统一规划,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍。另外一个制约我国数据资源开放和共享的一个重要因素是政策法规不完善,大数据挖掘缺乏相应的立法。无法既保证共享又防止滥用。因此,建立一个良性发展的数据共享生态系统,是我国大数据发展需要迈过去的一道砍。同时,开放与隐私如何平衡,也是大数据开放过程中面临的最大难题。如何在推动数据全面开放、应用和共享的同时有效地保护公民、企业隐私,逐步加强隐私立法,将是大数据时代的一个重大挑战。

大数据发展趋势

虽然大数据仍在起步阶段,存在诸多挑战,但未来的发展依然非常乐观。大数据的发展呈现八大趋势:数据资源化,将成为最有价值的资产;大数据在更多的传统行业的企业管理落地;大数据和传统商业智能融合,行业定制化解决方案将涌现;数据将越来越开放,数据共享联盟将出现;大数据安全越来越受重视,大数据安全市场将愈发重要;大数据促进智慧城市发展,为智慧城市的引擎;大数据将催生一批新的工作岗位和相应的专业;大数据在多方位改善我们的生活。

趋势一:数据资源化,将成为最有价值的资产

随着大数据应用的发展,大数据价值得以充分的体现,大数据在企业和社会层面成为重要的战略资源,数据成为新的战略制高点,是大家抢夺的新焦点。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。Google、Facebook、亚马逊、腾讯、网络、阿里巴巴和360等企业正在运用大数据力量获得商业上更大的成功,并且金融和电信企业也在运用大数据来提升自己的竞争力。我们有理由相信大数据将不断成为机构和企业的资产,成为提升机构和企业竞争力的有力武器。

趋势二:大数据在更多的传统行业的企业管理落地

一种新的技术往往在少数行业应用取得了好的效果,对其他行业就有强烈的示范效应。目前大数据在大型互联网企业已经得到较好的应用,其他行业的大数据尤其是电信和金融也逐渐在多种应用场景取得效果。因此,我们有理由相信,大数据作为一种从数据中创造新价值的工具,将会在许多行业的企业得到应用,带来广泛的社会价值。大数据将在帮助企业更好的理解和满足客户需求和潜在需求,更好的应用在业务运营智能监控、精细化企业运营、客户生命周期管理、精细化营销、经营分析和战略分析等方面。企业管理既有艺术也有科学,相信大数据在科学管理企业方面有更显着的促进,让更多拥抱大数据的企业实现智慧企业管理。

趋势三:大数据和传统商业智能融合,行业定制化解决方案将涌现

来自传统商业智能领域者将大数据当成一个新增的数据源,而大数据从业者则认为传统商业智能只是其领域中处理少量数据时的一种方法。大数据用户更希望能获得一种整体的解决方案,即不仅要能收集、处理和分析企业内部的业务数据,还希望能引入互联网上的网络浏览、微博、微信等非结构化数据。除此之外,还希望能结合移动设备的位置信息,这样企业就可以形成一个全面、完整的数据价值发展平台。毕竟,无论是大数据还是商业智能,目的都是为分析服务的,数据全面整合起来,更有利于发现新的商业机会,这就是大数据商业智能。同时,由于行业的差异性,很难研发出一套适用于各行业的大数据商业智能分析系统,因此,在一些规模较大的行业市场,大数据服务提供商将会以更加定制化的商业智能解决方案提供大数据服务。我们相信更多的大数据商业智能定制化解决方案将在电信、金融、零售等行业出现。

趋势四:数据将越来越开放,数据共享联盟将出现

大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。我们看到,美国、英国、澳大利亚等国家的政府都在政府和公共事业上的数据做出努力。而国内的一些城市和部门也在逐渐开展数据开放的工作。比如北京市在2012年就开始试运行政务数据资源网,在2013年年底正式开放;上海在2012年启动了政府数据资源开放试点工作,数据涉及地理位置、交通、经济统计和资格资质等数据;2014年,贵州省也加入数据开放之列,10月份云上贵州正式上线。对于不同的行业,数据越共享也是越有价值。如果每一个医院想获得更多病情特征库以及药效信息,那么就需要全国,甚至全世界的医疗信息共享,从而可以通过平台进行分析,获取更大的价值。我们相信数据会呈现一种共享的趋势,不同领域的数据联盟将出现。

趋势五:大数据安全越来越受重视,大数据安全市场将愈发重要

随着数据的价值的越来越重要,大数据的安全稳定也将会逐渐被重视。网络和数字化生活也使得犯罪的分子更容易获取关于他人的信息,也有更多的骗术和犯罪手段出现,所以,在大数据时代,无论对于数据本身的保护,还是对于由数据而演变的一些信息的安全,对大数据分析有较高要求的企业将至关重要。大数据安全是跟大数据业务相对应的,与传统安全相比,大数据安全的最大区别是安全厂商在思考安全问题的时候首先要进行业务分析,并且找出针对大数据的业务的威胁,然后提出有针对性的解决方案。比如,对于数据存储这个场景,目前很多企业采用开源软件如Hadoop技术来解决大数据问题,由于其开源性,但是其安全问题也是突出的。因此,市场需要更多专业的安全厂商针对不同的大数据安全问题来提供专业的服务。

趋势六:大数据促进智慧城市发展,为智慧城市的引擎

随着大数据的发展,大数据在智慧城市将发挥着越来越重要的作用。由于人口聚集给城市带来了交通、医疗、建筑等各方面的压力,需要城市能够更合理地进行资源布局和调配,而智慧城市正是城市治理转型的最优解决方案。智慧城市是通过物与物、物与人、人与人的互联互通能力、全面感知能力和信息利用能力,通过物联网、移动互联网、云计算等新一代信息技术,实现城市高效的政府管理、便捷的民生服务、可持续的产业发展。智慧城市相对于之前数字城市概念,最大的区别在于对感知层获取的信息进行了智慧的处理。由城市数字化到城市智慧化,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术。大数据是智慧城市的核心智慧引擎。智慧安防、智慧交通、智慧医疗、智慧城管等,都是以大数据为基础的的智慧城市应用领域。

趋势七:大数据将催生一批新的工作岗位和相应的专业

一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等等。具有有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。而由于有强烈的市场需求,高校也将逐步开设大数据相关的专业,以培养相应的专业人才。企业也将和高校紧密合作,协助高校联合培养大数据人才。如2014年,IBM 全面推进与高校在大数据领域的合作,引入强大的研发团队和业务伙伴,推动“大数据平台”和“大数据分析”的面向行业产学研创新合作以及系统化知识体系建设和高价值人才培养,建设符合中国教学特色及人才需求的大数据相关学分课程,为未来建设特色专业方向做准备。

趋势八:大数据在多方位改善我们的生活

大数据不仅用于企业和政府,也应用于我们的生活。在健康方面:我们可以利用智能手环监测,对我们的睡眠模式来进行追踪,了解睡眠质量;我们可以利用智能血压计、智能心率仪远程的监控身在异地的家里老人的健康情况,让远在他方的外出工作者更加放心;在出行方面:我们可以利用智能导航出行GPS数据了解交通状况,并根据拥堵情况进行路线实时调优。在居家生活方面:大数据将成为智能家居的核心,智能家电实现了拟人智能,产品通过传感器和控制芯片来捕捉和处理信息,可以根据住宅空间环境和用户需求自动设置控制,甚至提出优化生活质量的建议,如我们的冰箱可能会在每天一大早建议我们当天的菜谱。

以上是小编为大家分享的关于大数据时代,面临的七个挑战和八大趋势的相关内容,更多信息可以关注环球青藤分享更多干货

② 盘点2021年大数据分析常见的5大难点!

2021年已经到来,现在是深入研究大数据分析面临的挑战的时候了,需要调查其根本原因,本文重点介绍了解决这些问题的潜在解决方案。

1、解决方案无法提供新见解或及时的见解

(1)数据不足

有些组织可能由于分析数据不足,无法生成新的见解。在这种情况下,可以进行数据审核,并确保现有数据集成提供所需的见解。新数据源的集成也可以消除数据的缺乏。还需要检查原始数据是如何进入系统的,并确保所有可能的维度和指标均已经公开并进行分析。最后,数据存储的多样性也可能是一个问题。可以通过引入数据湖来解决这一问题。

(2)数据响应慢

当组织需要实时接收见解时,通常会发生这种情况,但是其系统是为批处理而设计的。因此有些数据现在仍无法使用,因为它们仍在收集或预处理中。

检查组织的ETL(提取、转换、加载)是否能够根据更频繁的计划来处理数据。在某些情况下,批处理驱动的解决方案可以将计划调整提高两倍。

(3)新系统采用旧方法

虽然组织采用了新系统。但是通过原有的办法很难获得更好的答案。这主要是一个业务问题,并且针对这一问题的解决方案因情况而异。最好的方法是咨询行业专家,行业专家在分析方法方面拥有丰富经验,并且了解其业务领域。

2、不准确的分析

(1)源数据质量差

如果组织的系统依赖于有缺陷、错误或不完整的数据,那么获得的结果将会很糟糕。数据质量管理和涵盖ETL过程每个阶段的强制性数据验证过程,可以帮助确保不同级别(语法、语义、业务等)的传入数据的质量。它使组织能够识别并清除错误,并确保对某个区域的修改立即显示出来,从而使数据纯净而准确。

(2)与数据流有关的系统缺陷

过对开发生命周期进行高质量的测试和验证,可以减少此类问题的发生,从而最大程度地减少数据处理问题。即使使用高质量数据,组织的分析也可能会提供不准确的结果。在这种情况下,有必要对系统进行详细检查,并检查数据处理算法的实施是否无故障

3、在复杂的环境中使用数据分析

(1)数据可视化显示凌乱

如果组织的报告复杂程度太高。这很耗时或很难找到必要的信息。可以通过聘请用户界面(UI)/用户体验(UX)专家来解决此问题,这将帮助组织创建引人注目的用户界面,该界面易于浏览和使用。

(2)系统设计过度

数据分析系统处理的场景很多,并且为组织提供了比其需要还要多的功能,从而模糊了重点。这也会消耗更多的硬件资源,并增加成本。因此,用户只能使用部分功能,其他的一些功能有些浪费,并且其解决方案过于复杂。

确定多余的功能对于组织很重要。使组织的团队定义关键指标:希望可以准确地测量和分析什么,经常使用哪些功能以及关注点是什么。然后摒弃所有不必要的功能。让业务领域的专家来帮助组织进行数据分析也是一个很好的选择。

4、系统响应时间长

(1)数据组织效率低下

也许组织的数据组织起来非常困难。最好检查其数据仓库是否根据所需的用例和方案进行设计。如果不是这样,重新设计肯定会有所帮助。

(2)大数据分析基础设施和资源利用问题

问题可能出在系统本身,这意味着它已达到其可扩展性极限,也可能是组织的硬件基础设施不再足够。

这里最简单的解决方案是升级,即为系统添加更多计算资源。只要它能在可承受的预算范围内帮助改善系统响应,并且只要资源得到合理利用就很好。从战略角度来看,更明智的方法是将系统拆分为单独的组件,并对其进行独立扩展。但是需要记住的是,这可能需要对系统重新设计并进行额外的投资。

5、维护成本昂贵

(1)过时的技术

组织最好的解决办法是采用新技术。从长远来看,它们不仅可以降低系统的维护成本,还可以提高可靠性、可用性和可扩展性。逐步进行系统重新设计,并逐步采用新元素替换旧元素也很重要。

(2)并非最佳的基础设施

基础设施总有一些优化成本的空间。如果组织仍然采用的是内部部署设施,将业务迁移到云平台可能是一个不错的选择。使用云计算解决方案,组织可以按需付费,从而显着降低成本。

(3)选择了设计过度的系统

如果组织没有使用大多数系统功能,则需要继续为其使用的基础设施支付费用。组织根据自己的需求修改业务指标并优化系统。可以采用更加符合业务需求的简单版本替换某些组件。

③ 在当前大数据的新环境下it企业面临哪些机会与挑战

  1. 挑战一:数据来源错综复杂,丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧。

  2. 挑战二:数据挖掘分析模型建立,关于大数据分析,人们鼓吹其神奇价值的喧嚣声浪很高,却鲜见其实际运用得法的模式和方法。

  3. 挑战三:数据开放与隐私的权衡,目前我国一些部门和机构拥有大量数据但宁愿自己不用也不愿提供给有关部门共享,导致信息不完整或重复投资。

  4. 挑战四:大数据管理与决策,在今时今日的商业世界中,高管的决策仍然更多地依赖个人经验和直觉,而不是基于数据。

  5. 挑战五:大数据人才缺口,精通大数据技术的相关人才也成为一个大缺口。

④ 大数据时代所面临的挑战

大数据时代所面临的挑战

大数据时代临近,企业数据呈现爆炸式增长,如何为了更大的发掘企业数据价值将是很多公司必须要面对的挑战。首当其冲的是大数据的快速发展对我们原有的IT基础设施提供了更高的挑战,原有的IT基础设施以及很难满足大数据时代的需求。发现价值的过程离不开基础平台技术的创新与发展。

基础平台的改变

首先大数据挑战的就是企业的存储系统,大数据爆炸式的增长使得存储系统的容量、扩展能力、传输瓶颈等方面都面临着挑战。与之相连的还有服务器的计算能力,内存的存储能力等等都面临着新的技术攻关。目前闪存技术的发展以及英特尔、IBM等公司在大数据方面都已经投入相当大的资金进行研发,主要也是为了解决大数据对基础平台所带来的挑战。

同样,大数据分析同样面临着软件方面的挑战,同时也引发数据库、数据仓库、数据挖掘、商业智能、人工智能、内容/知识管理等领域的技术变革。Hadoop是近年大家经常提到了一个能够对大量数据进行分布式处理的软件框架,用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序

商业模式的挑战

大数据具有强大的数据价值,当我们可以利用大数据挖掘到需要信息的时候,则需要我们根据得到的信息对企业的商业模型、产品和服务等方面进行创新,这样才能够真正的让大数据的价值得到体现。

如何利用大数据信息来改变商业模式最终实现价值呢,这里我们引用Tesco为案例。Tesco收集了海量的顾客数据,并且通过对每位顾客海量数据的分析,Tesco对每位顾客的信用程度和相关风险都会有一个极为准确的评估。在这个基础上,Tesco推出了自己的信用卡,未来Tesco还有野心推出自己的存款服务。

以上是小编为大家分享的关于大数据时代所面临的挑战的相关内容,更多信息可以关注环球青藤分享更多干货

⑤ 大数据工程面临挑战有哪些

基础平台的改变


首先大数据挑战的就是企业的存储系统,大数据爆炸式的增长使得存储系统的容量、扩展能力、传输瓶颈等方面都面临着挑战。与之相连的还有服务器的计算能力,内存的存储能力等等都面临着新的技术攻关。目前闪存技术的发展以及英特尔、IBM等公司在大数据方面都已经投入相当大的资金进行研发,主要也是为了解决大数据对基础平台所带来的挑战。


商业模式的挑战


大数据具有强大的数据价值,当我们可以利用大数据挖掘到需要信息的时候,则需要我们根据得到的信息对企业的商业模型、产品和服务等方面进行创新,这样才能够真正的让大数据的价值得到体现。

阅读全文

与大数据调试有哪些挑战相关的资料

热点内容
产品抛丸后外观发黑怎么办 浏览:248
昆明干花批发市场在哪里 浏览:65
碳排放权登记和交易哪个重要 浏览:746
如何预防数据倾斜 浏览:844
某厂产品市场上最多的是什么 浏览:927
如何增强信息推送 浏览:922
怎么让交易猫快速介入仲裁 浏览:225
成都最大的小市场在哪里 浏览:665
代理业务员是什么意思 浏览:953
天津国际招标代理公司是什么级别 浏览:992
解封qq号要发多少信息 浏览:615
如何投注理财产品 浏览:742
如何推广自己的品牌产品 浏览:552
苏州远程指导技术咨询包括什么 浏览:625
用户数据怎么统计 浏览:840
如何写机电产品竞赛报名表 浏览:365
统一机油代理公司怎么样 浏览:503
塑料配色技术在哪里学 浏览:832
大行程数据是什么 浏览:642
绵阳职业技术学院篮球校队如何 浏览:117