‘壹’ 大数据工程师的工作内容是什么
1、数据采集:
业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。
2、数据清洗:
一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。
一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。
一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。
3、数据存储:
清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。
4、数据分析统计:
数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。
5、数据可视化:
用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据。
‘贰’ 大数据工程师主要是做什么的
大数据工程师的主要工作是:分析历史、预测未来、优化选择。
1、分析历史,找出过去事件的特征:
大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。
2、预测未来,预测未来可能发生的事情:
通过引入关键因素,大数据工程师可以预测未来的消费趋势。
3、优化选择,找出最优化的结果:
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
在工作岗位上,大数据工程师需要基于Hadoop,Spark等构建数据分析平台,进行设计、开发分布式计算业务。负责大数据平台(Hadoop,HBase,Spark等)集群环境的搭建,性能调优和日常维护。负责数据仓库设计,数据ETL的设计、开发和性能优化。参与构建大数据平台,依托大数据技术建设用户画像。
(2)大数据工程师都做什么扩展阅读:
大数据工程师可以从事对大量数据的采集、清洗、分析、治理、挖掘,并对这些数据加以利用、管理、维护和服务的相关技术工作。
大数据工程师专业技术水平等级培训考试分初级、中级、高级三个级别。
大数据工程师培养人群:有志于从事大数据采集、清洗、分析、治理、挖掘等技术研究,并加以利用、管理、维护和服务的工程技术人员。
大数据工程师初、中、高三个级别考试均设《大数据理论基础》、《大数据技能实操》两个科目。
‘叁’ 大数据开发工程师主要做什么
大数据开发工程师主要负责数据仓库建设,数据分析、数据统计、平台建设及维护等工作内容,大数据工程师需要熟练掌握各种数据技术,对个人能力要求很高,因而工资水平也是非常可观的。
‘肆’ 大数据分析工程师主要做什么
未来,对熟练的大数据分析工程师的需求将急速增长。现实的情况是这样的,无论公司属于哪个行业,要想在当今竞争激烈的市场环境中取得成功,需要一个强大的软件架构用来存储和访问公司数据,最好从公司创立一开始就要搭建它。那么今天小编就带大家先了解一下,大数据分析工程师主要做什么?一个合格的大数据分析工程师有哪些关键技能呢?我们接着往下看。
大数据分析工程师主要做什么?
大数据分析工程师负责创建和维护分析基础架构,该基础架构几乎可以支持数据世界中的所有其他功能。他们负责大数据架构的开发、构建、维护和测试,例如数据库和大数据处理系统。还负责创建用于建模,挖掘,获取和验证数据集合等流程。
因此,大数据分析工程师需要掌握通用脚本语言和工具,利用和改进数据分析系统,不断提高数据数量和质量。
大数据分析工程师的关键技能
1.大数据架构的工具与组件
大数据分析工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。
2.深入了解SQL和其它数据库解决方案
大数据分析工程师需要熟悉数据库管理系统,深入了解SQL至关重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。
3.数据仓库和ETL工具
数据仓库和ETL经验对于大数据分析工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。此外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。
4.基于Hadoop的分析(HBase,Hive,MapRece等)
对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapRece的知识存储是必需的。
5.编码
说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。
6.机器学习
机器学习已经成为标准数据科学,该领域的知识可以帮我们构建同类产品的解决方案。这种知识还有一个好处,就是让你在这个领域极具市场价值,因为在这种情况下能够“戴上两顶帽子”会让你成为一个更强大的工具。
7.多种操作系统
最后,需要我们对Unix,Linux和Solaris系统有深入了解,许多数学工具基于这些操作系统,因为它们有Windows和Mac系统功能没有的访问权限和特殊硬件需求。
虽然这些数据解决方案可以帮助您踏进大数据工程领域,虽然它们有分发或授予认证,但只是提供证书或文凭。虽然一般学习够了,但它们不能被认视为实际认证或实践的替代品。希望本文能够给大家阐明大数据分析工程师所需的特定知识,技能和要求。这个领域正在迅速发展,但它也充满了挑战与险阻。在工作中通过适当的认证填补技能组合的空白,实现最好学习的关键一步。综上所述,就是小编今天给大家分享的内容,希望可以帮助到大家。