导航:首页 > 数据处理 > 分布数据库有哪些

分布数据库有哪些

发布时间:2022-03-02 07:16:56

❶ 目前主流的分布式数据库系统实现方案有哪些

集中式系统,主要指IBM、HP等小型机以上档次的系统,一个主机带多个终端。终端没有数据处理能力,运算全部在主机上进行。现在的银行系统,大部分都是这种集中式的系统,此外,在大型企业、科研单位、军队、政府等也有分布。集中式系统,主要流行与上个世纪。现在还在使用集中式系统的,很大一部分是为了沿用原来的软件,而这些软件往往很昂贵。分布式系统,一般采用客户机/服务器模式、多层、服务器集群等技术。是现在的主流。两种系统,各有各的好处。而且这两种系统的划分,一般是从工程的角度来说的,教科书上并没有这样的定义。

❷ 主要的特种类型数据库有哪些这些数据库在我国的分布情况

数据类型

基本类型有以下四种:
int长度数据类型有:byte(8bits)、short(16bits)、int(32bits)、long(64bits)、
float长度数据类型有:单精度(32bits float)、双精度(64bits double)
boolean类型变量的取值有:ture、false
char数据类型有:unicode字符,16位
对应的类类型:Integer、Float、Boolean、Character、Double、Short、Byte、Long

转换原则

从低精度向高精度转换
byte 、short、int、long、float、double、char
注:两个char型运算时,自动转换为int型;当char与别的类型运算时,也会先自动转换为int型的,再做其它类型的自动转换

基本类型向类类型转换

正向转换:通过类包装器来new出一个新的类类型的变量
Integer a= new Integer(2);
反向转换:通过类包装器来转换
int b=a.intValue();

类类型向字符串转换

正向转换:因为每个类都是object类的子类,而所有的object类都有一个toString()函数,所以通过toString()函数来转换即可
反向转换:通过类包装器new出一个新的类类型的变量
eg1: int i=Integer.valueOf(“123”).intValue()
说明:上例是将一个字符串转化成一个Integer对象,然后再调用这个对象的intValue()方法返回其对应的int数值。
eg2: float f=Float.valueOf(“123”).floatValue()
说明:上例是将一个字符串转化成一个Float对象,然后再调用这个对象的floatValue()方法返回其对应的float数值。
eg3: boolean b=Boolean.valueOf(“123”).booleanValue()
说明:上例是将一个字符串转化成一个Boolean对象,然后再调用这个对象的booleanValue()方法返回其对应的boolean数值。
eg4:double d=Double.valueOf(“123”).doubleValue()
说明:上例是将一个字符串转化成一个Double对象,然后再调用这个对象的doubleValue()方法返回其对应的double数值。
eg5: long l=Long.valueOf(“123”).longValue()
说明:上例是将一个字符串转化成一个Long对象,然后再调用这个对象的longValue()方法返回其对应的long数值。
eg6: char=Character.valueOf(“123”).charValue()
说明:上例是将一个字符串转化成一个Character对象,然后再调用这个对象的charValue()方法返回其对应的char数值。

基本类型向字符串的转换
正向转换:
如:int a=12;
String b;b=a+””;

反向转换:
通过类包装器
eg1:int i=Integer.parseInt(“123”)
说明:此方法只能适用于字符串转化成整型变量
eg2: float f=Float.valueOf(“123”).floatValue()
说明:上例是将一个字符串转化成一个Float对象,然后再调用这个对象的floatValue()方法返回其对应的float数值。
eg3: boolean b=Boolean.valueOf(“123”).booleanValue()
说明:上例是将一个字符串转化成一个Boolean对象,然后再调用这个对象的booleanValue()方法返回其对应的boolean数值。
eg4:double d=Double.valueOf(“123”).doubleValue()
说明:上例是将一个字符串转化成一个Double对象,然后再调用这个对象的doubleValue()方法返回其对应的double数值。
eg5: long l=Long.valueOf(“123”).longValue()
说明:上例是将一个字符串转化成一个Long对象,然后再调用这个对象的longValue()方法返回其对应的long数值。
eg6: char=Character.valueOf(“123”).charValue()
说明:上例是将一个字符串转化成一个Character对象,然后再调用这个对象的charValue()方法返回其对应的char数值。
参考资料:http://www.javanb.com/jsp/1/4341.html

❸ 分布式数据库系统的数据分布方式有哪些

数据分布是分布式数据库的主要特征。实现数据访问的局部化是分布式数据库设计的重要内容。文中介绍了分布式数据库系统的主要特征及关键技术,重点对关系的分割和分布式数据的访问进行了讨论。

❹ 物联网数据管理系统与分布数据库系统具有什么特性

1. IBM 的DB2作为关系数据库领域的开拓者和领航人,IBM在1977年完成了System R系统的原型,1980年开始提供集成的数据库服务器—— System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。2. OracleOracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。3. InformixInformix在1980年成立,目的是为Unix等开放操作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。4. SybaseSybase公司成立于1984年,公司名称“Sybase”取自“system”和“database” 相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。5. SQL Server1987 年,微软和IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 1.0 版。6. PostgreSQLPostgreSQL 是一种特性非常齐全的自由软件的对象——关系性数据库管理系统(ORDBMS),它的很多特性是当今许多商业数据库的前身。PostgreSQL最早开始于BSD的Ingres项目。PostgreSQL 的特性覆盖了SQL-2/SQL-92和SQL-3。首先,它包括了可以说是目前世界上最丰富的数据类型的支持;其次,目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统.7.mySQLmySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。MySQL的官方网站的网址是: www.mysql.com8.Access数据库 美国Microsoft公司于1994年推出的微机数据库管理系统。它具有界面友好、易学易用、开发简单、接口灵活等特点,是典型的新一代桌面数据库管理系统。其主要特点如下: (1)完善地管理各种数据库对象,具有强大的数据组织、用户管理、安全检查等功能。 (2)强大的数据处理功能,在一个工作组级别的网络环境中,使用Access开发的多用户数据库管理系统具有传统的XBASE(DBASE、FoxBASE的统称)数据库系统所无法实现的客户服务器(Cient/Server)结构和相应的数据库安全机制,Access具备了许多先进的大型数据库管理系统所具备的特征,如事务处理/出错回滚能力等。 (3)可以方便地生成各种数据对象,利用存储的数据建立窗体和报表,可视性好。(4)作为Office套件的一部分,可以与Office集成,实现无缝连接。 (5)能够利用Web检索和发布数据,实现与Internet的连接。 Access主要适用于中小型应用系统,或作为客户机/服务器系统中的客户端数据库。9.FoxPro数据库最初由美国Fox公司1988年推出,1992年Fox公司被Microsoft公司收购后,相继推出了FoxPro2.5、2.6和VisualFoxPro等版本,其功能和性能有了较大的提高。 FoxPro2.5、2.6分为DOS和Windows两种版本,分别运行于DOS和Windows环境下。FoxPro比FoxBASE在功能和性能上又有了很大的改进,主要是引入了窗口、按纽、列表框和文本框等控件,进一步提高了系统的开发能力。

❺ 什么是分布式数据库的分布透明性

分布式数据库系统有两种:一种是物理上分布的,但逻辑上却是集中的。这种分布式数据库只适宜用途比较单一的、不大的单位或部门。另一种分布式数据库系统在物理上和逻辑上都是分布的,也就是所谓联邦式分布数据库系统。由于组成联邦的各个子数据库系统是相对“自治”的,这种系统可以容纳多种不同用途的、差异较大的数据库,比较适宜于大范围内数据库的集成。

数据独立性是数据库方法追求的主要目标之一,分布透明性指用户不必关心数据的逻辑分区,不必关心数据物理位置分布的细节,也不必关心重复副本(冗余数据)的一致性问题,同时也不必关心局部场地上数据库支持哪种数据模型。分布透明性的优点是很明显的。有了分布透明性,用户的应用程序书写起来就如同数据没有分布一样。当数据从一个场地移到另一个场地时不必改写应用程序。当增加某些数据的重复副本时也不必改写应用程序。数据分布的信息由系统存储在数据字典中.用户对非本地数据的访问请求由系统根据数据字典予以解释、转换、传送。

大数据常用哪些数据库

通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL操作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。

大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写操作,从数据库是负责读操作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型

1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个

(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。

(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。

(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项

(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。

(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。

(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。

2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个

(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。

(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。

(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。

(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。

(6)Voldemort:具备数据备份和分布式键值存储系统。

(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。

3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个

(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。

(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapRece查询,以及一个使用HTTP的API。

(3)Couchbase:NoSQL文档数据库基于JSON模型。

(4)RavenDB:RavenDB是一个基于.NET语言的面向文档数据库。

(5)MarkLogic:MarkLogic NoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。

4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个

(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。

(2)InfiniteGraph:一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。

(3)AllegroGraph:AllegroGraph是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS++和Prolog推理。

5、内存数据网格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个

(1)Hazelcast:Hazelcast CE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。

(2)Oracle Coherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。

(3)Terracotta BigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。

(4)GemFire:Vmware vFabric GemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。

(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer 及client/server 架构。

(6)GridGain:分布式、面向对象、基于内存、SQL+NoSQL键值数据库。支持ACID事务。

(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。

❼ 数据库分布

分布式软件系统(Distributed Software Systems)是支持分布式处理的软件系统,是在由通信网络互联的多处理机体系结构上执行任务的系统。它包括分布式操作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。

分布式操作系统负责管理分布式处理系统资源和控制分布式程序运行。它和集中式操作系统的区别在于资源管理、进程通信和系统结构等方面。

分布式程序设计语言用于编写运行于分布式计算机系统上的分布式程序。一个分布式程序由若干个可以独立执行的程序模块组成,它们分布于一个分布式处理系统的多台计算机上被同时执行。它与集中式的程序设计语言相比有三个特点:分布性、通信性和稳健性。

分布式文件系统具有执行远程文件存取的能力,并以透明方式对分布在网络上的文件进行管理和存取。

分布式数据库系统由分布于多个计算机结点上的若干个数据库系统组成,它提供有效的存取手段来操纵这些结点上的子数据库。分布式数据库在使用上可视为一个完整的数据库,而实际上它是分布在地理分散的各个结点上。当然,分布在各个结点上的子数据库在逻辑上是相关的。

---------------

分布式数据库系统是由若干个站集合而成。这些站又称为节点,它们在通讯网络中联接在一起,每个节点都是一个独立的数据库系统,它们都拥有各自的数据库、中央处理机、终端,以及各自的局部数据库管理系统。因此分布式数据库系统可以看作是一系列集中式数据库系统的联合。它们在逻辑上属于同一系统,但在物理结构上是分布式的。

分布式数据库系统已经成为信息处理学科的重要领域,正在迅速发展之中,原因基于以下几点:

1、它可以解决组织机构分散而数据需要相互联系的问题。比如银行系统,总行与各分行处于不同的城市或城市中的各个地区,在业务上它们需要处理各自的数据,也需要彼此之间的交换和处理,这就需要分布式的系统。

2、如果一个组织机构需要增加新的相对自主的组织单位来扩充机构,则分布式数据库系统可以在对当前机构影响最小的情况下进行扩充。

3、均衡负载的需要。数据的分解采用使局部应用达到最大,这使得各处理机之间的相互干扰降到最低。负载在各处理机之间分担,可以避免临界瓶颈。

4、当现有机构中已存在几个数据库系统,而且实现全局应用的必要性增加时,就可以由这些数据库自下而上构成分布式数据库系统。

5、相等规模的分布式数据库系统在出现故障的几率上不会比集中式数据库系统低,但由于其故障的影响仅限于局部数据应用,因此就整个系统来讲它的可靠性是比较高的。

特点

1、在分布式数据库系统里不强调集中控制概念,它具有一个以全局数据库管理员为基础的分层控制结构,但是每个局部数据库管理员都具有高度的自主权。

2、在分布式数据库系统中数据独立性概念也同样重要,然而增加了一个新的概念,就是分布式透明性。所谓分布式透明性就是在编写程序时好象数据没有被分布一样,因此把数据进行转移不会影响程序的正确性。但程序的执行速度会有所降低。

3、集中式数据库系统不同,数据冗余在分布式系统中被看作是所需要的特性,其原因在于:首先,如果在需要的节点复制数据,则可以提高局部的应用性。其次,当某节点发生故障时,可以操作其它节点上的复制数据,因此这可以增加系统的有效性。当然,在分布式系统中对最佳冗余度的评价是很复杂的。

分布式系统的类型,大致可以归为三类:

1、分布式数据,但只有一个总? 据库,没有局部数据库。

2、分层式处理,每一层都有自己的数据库。

3、充分分散的分布式网络,没有中央控制部分,各节点之间的联接方式又可以有多种,如松散的联接,紧密的联接,动态的联接,广播通知式联接等。

---------------------

什么是分布式智能?
NI LabVIEW 8的分布式智能结合了相关的技术和工具,解决了分布式系统开发会碰到的一些挑战。更重要的是,NI LabVIEW 8的分布式智能提供的解决方案不仅令这些挑战迎刃而解,且易于实施。LabVIEW 8的分布式智能具体包括:

可对分布式系统中的所有结点编程——包括主机和终端。尤为可贵的是,您可以利用LabVIEW图形化编程方式,对大量不同类型的对象进行编程,如桌面处理器、实时系统、FPGA、PDA、嵌入式微处理器和DSP。
导航所有系统结点的查看系统——LabVIEW Project Explorer。您可使用Project Explorer查看、编辑、运行和调试运行于任何对象上的结点。
经简化的数据共享编程界面——共享变量。使用共享变量,您可轻松地在系统间(甚至实时系统间)传输数据且不影响性能。无通信循环,无RT FIFO,无需低层次TCP函数。您可以利用简单的对话完成共享变量的配置,从而将数据在各系统间传输或将数据连接到不同的数据源。您还可添加记录、警报、事件等数据服务――一切仅需简单的对话即可完成。
实现了远程设备及系统内部或设备及系统之间的同步操作——定时和同步始终是定义高性能测量和控制系统的关键问题。利用基于NI技术的系统,探索设备内部并编写其内部运行机制,从而取得比传统仪器或PLC方式下更为灵活的解决方案。

--------------------

在分布式计算机操作系统支持下,互连的计算机可以互相协调工作,共同完成一项任务。

也可以这么解释:
一种计算机硬件的配置方式和相应的功能配置方式。它是一种多处理器的计算机系统,各处理器通过互连网络构成统一的系统。系统采用分布式计算结构,即把原来系统内中央处理器处理的任务分散给相应的处理器,实现不同功能的各个处理器相互协调,共享系统的外设与软件。这样就加快了系统的处理速度,简化了主机的逻辑结构.

易游贝贝祝你好运

❽ 哪些数据库支持分布式

什么是分布式计算?所谓分布式计算是一门计算机科学,它研究如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结果。最近的分布式计算项目已经被用于使用世界各地成千上万位志愿者的计算机的闲置计算能力,通过因特网,您可以分析来自外太空的电讯号,寻找隐蔽的黑洞,并探索可能存在的外星智慧生命;您可以寻找超过1000万位数字的梅森质数;您也可以寻找并发现对抗艾滋病病毒的更为有效的药物。这些项目都很庞大,需要惊人的计算量,仅仅由单个的电脑或是个人在一个能让人接受的时间内计算完成是决不可能的。 分布式计算是利用互联网上的计算机的 CPU 的闲置处理能力来解决大型计算问题的一种计算科学。下面,我们看看它是怎么工作的: 首先, 要发现一个需要非常巨大的计算能力才能解决的问题。这类问题一般是跨学科的、极富挑战性的、人类急待解决的科研课题。其中较为着名的是: 1.解决较为复杂的数学问题,例如:GIMPS(寻找最大的梅森素数)。 2.研究寻找最为安全的密码系统,例如:RC-72(密码破解)。 3.生物病理研究,例如:Folding@home(研究蛋白质折叠,误解,聚合及由此引起的相关疾病)。 4.各种各样疾病的药物研究,例如:United Devices(寻找对抗癌症的有效的药物)。 5.信号处理,例如:SETI@Home(在家寻找地外文明)。 从这些实际的例子可以看出,这些项目都很庞大,需要惊人的计算量,仅仅由单个的电脑或是个人在一个能让人接受的时间内计算完成是决不可能的。在以前,这些问题都应该由超级计算机来解决。但是, 超级计算机的造价和维护非常的昂贵,这不是一个普通的科研组织所能承受的。随着科学的发展,一种廉价的、高效的、维护方便的计算方法应运而生——分布式计算! 随着计算机的普及,个人电脑开始进入千家万户。与之伴随产生的是电脑的利用问题。越来越多的电脑处于闲置状态,即使在开机状态下CPU的潜力也远远不能被完全利用。我们可以想象,一台家用的计算机将大多数的时间花费在“等待”上面。即便是使用者实际使用他们的计算机时,处理器依然是寂静的消费,依然是不计其数的等待(等待输入,但实际上并没有做什么)。互联网的出现, 使得连接调用所有这些拥有限制计算资源的计算机系统成为了现实。 那么,一些本身非常复杂的但是却很适合于划分为大量的更小的计算片断的问题被提出来,然后由某个研究机构通过大量艰辛的工作开发出计算用服务端和客户端。服务端负责将计算问题分成许多小的计算部分,然后把这些部分分配给许多联网参与计算的计算机进行并行处理,最后将这些计算结果综合起来得到最终的结果。 当然,这看起来也似乎很原始、很困难,但是随着参与者和参与计算的计算机的数量的不断增加, 计算计划变得非常迅速,而且被实践证明是的确可行的。目前一些较大的分布式计算项目的处理能力已经可以达到甚而超过目前世界上速度最快的巨型计算机。 您也可以选择参加某些项目以捐赠的 Cpu 内核处理时间,您将发现您所提供的 CPU 内核处理时间将出现在项目的贡献统计中。您可以和其他的参与者竞争贡献时间的排名,您也可以加入一个已经存在的计算团体或者自己组建一个计算小组。这种方法很利于调动参与者的热情。 随着民间的组队逐渐增多, 许多大型组织(例如公司、学校和各种各样的网站)也开始了组建自己的战队。同时,也形成了大量的以分布式计算技术和项目讨论为主题的社区,这些社区多数是翻译制作分布式计算项目的使用教程及发布相关技术性文章,并提供必要的技术支持。 那么谁可能加入到这些项目中来呢? 当然是任何人都可以! 如果您已经加入了某个项目,而且曾经考虑加入计算小组, 您将在中国分布式计算总站及论坛里找到您的家。任何人都能加入任何由我站的组建的分布式计算小组。希望您在中国分布式总站及论坛里发现乐趣。 参与分布式计算——一种能充分发挥您的个人电脑的利用价值的最有意义的选择——只需要下载有关程序,然后这个程序会以最低的优先度在计算机上运行,这对平时正常使用计算机几乎没有影响。如果你想利用计算机的空余时间做点有益的事情,还犹豫什么?马上行动起来吧,你的微不足道的付出或许就能使你在人类科学的发展史上留下不小的一笔呢! 专业定义 (中国科学技术信息研究所对分布式计算的定义) 分布式计算是近年提出的一种新的计算方式。所谓分布式计算就是在两个或多个软件互相共享信息,这些软件既可以在同一台计算机上运行,也可以在通过网络连接起来的多台计算机上运行。分布式计算比起其它算法具有以下几个优点: 1、稀有资源可以共享, 2、通过分布式计算可以在多台计算机上平衡计算负载, 3、可以把程序放在最适合运行它的计算机上, 其中,共享稀有资源和平衡负载是计算机分布式计算的核心思想之一。 实际上,网格计算就是分布式计算的一种。如果我们说某项工作是分布式的,那么,参与这项工作的一定不只是一台计算机,而是一个计算机网络,显然这种“蚂蚁搬山”的方式将具有很强的数据处理能力。网格计算的实质就是组合与共享资源并确保系统安全。 ENGLISH: What is Distributed Computing? ( http://www.distributedcomputing.info ) Distributed computing is a science which solves a large problem by giving small parts of the problem to many computers to solve and then combining the solutions for the parts into a solution for the problem. Recent distributed computing projects have been designed to use the computers of hundreds of thousands of volunteers all over the world, via the Internet, to look for extra-terrestrial radio signals, to look for prime numbers so large that they have more than ten million digits, and to find more effective drugs to fight the AIDS virus. These projects are so large, and require so much computing power to solve, that they would be impossible for any one computer or person to solve in a reasonable amount of time. 所谓分布式就是指数据和程序可以不位于一个服务器上,而是分散到多个服务器,以网络上分散分布的地理信息数据及受其影响的数据库操作为研究对象的一种理论计算模型。分布式有利于任务在整个计算机系统上进行分配与优化,克服了传统集中式系统会导致中心主机资源紧张与响应瓶颈的缺陷,解决了网络GIS 中存在的数据异构、数据共享、运算复杂等问题,是地理信息系统技术的一大进步。 传统的集中式GIS 起码对两大类地理信息系统难以适用,需用分布式计算模型。第一类是大范围的专业地理信息系统、专题地理信息系统或区域地理信息系统。这些信息系统的时空数据来源、类型、结构多种多样,只有靠分布式才能实现数据资源共享和数据处理的分工合作。比如综合市政地下管网系统,自来水、燃气、污水的数据都分布在各自的管理机构,要对这些数据进行采集、编辑、入库、提取、分析等计算处理就必须采用分布式,让这些工作都在各自机构中进行,并建立各自的管理系统作为综合系统的子系统去完成管理工作。而传统的集中式提供不了这种工作上的必要性的分工。第二类是在一个范围内的综合信息管理系统。城市地理信息系统就是这种系统中一个很有代表性的例子。世界各国管理工作城市市政管理占很大比例,城市信息的分布特性及城市信息管理部门在地域上的分散性决定了多层次、多成份、多内容的城市信息必须采用分布式的处理模式。 很明显,传统的集中式地理信息系统不能满足分工明确的现代社会的需求,分布式地理信息系统的进一步发展具有不可阻挡的势头。而且,分布式GIS 与网络GIS 、客户/服务器GIS计算模型、WWW计算模型的关系都很密切。分布式GIS 是实现网络GIS 的途径,是实现NGIS的一种重要计算模型;CIS模型实际上是分布式GIS 可供采用的一种具体化计算模型;WWW模型实际上也是分布式GIS模型可采用的一种具体化模型,而且也是具有相当发展前途的分布式GIS模型。分布式 GIS 与当今主导地理信息系统发展方向的技术的紧密联系使分布式GIS相应地成为地理信息系统的主要发展趋势。

❾ 数据库有哪些类

■关系数据库 facts and information

关系数据库是建立在集合代数基础上,应用数学方法来处理数据库中的数据。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。
关系模型由关系数据结构、关系操作集合、关系完整性约束三部分组成。

全关系系统十二准则
全关系系统应该完全支持关系模型的所有特征。关系模型的奠基人E.F.Codd具体地给出了全关系系统应遵循的基本准则。
;''准则0'' : 一个关系形的关系数据库系统必须能完全通过它的关系能力来管理数据库。
;''准则1'' 信息准则 : 关系数据库系统的所有信息都应该在逻辑一级上用表中的值这一种方法显式的表示。
;''准则2'' 保证访问准则 : 依靠表名、主码和列名的组合,保证能以逻辑方式访问关系数据库中的每个数据项。
;''准则3'' 空值的系统化处理 : 全关系的关系数据库系统支持空值的概念,并用系统化的方法处理空值。
;''准则4'' 基于关系模型的动态的联机数据字典 : 数据库的描述在逻辑级上和普通数据采用同样的表述方式。
;''准则5'' 统一的数据子语言 :
一个关系数据库系统可以具有几种语言和多种终端访问方式,但必须有一种语言,它的语句可以表示为严格语法规定的字符串,并能全面的支持各种规则。
;''准则6'' 视图更新准则 : 所有理论上可更新的视图也应该允许由系统更新。
;''准则7'' 高级的插入、修改和删除操作 : 系统应该对各种操作进行查询优化。
;''准则8'' 数据的物理独立性 : 无论数据库的数据在存储表示或存取方法上作任何变化,应用程序和终端活动都保持逻辑上的不变性。
;''准则9'' 数据逻辑独立性 : 当对基本关系进行理论上信息不受损害的任何改变时,应用程序和终端活动都保持逻辑上的不变性。
;''准则10'' 数据完整的独立性 : 关系数据库的完整性约束条件必须是用数据库语言定义并存储在数据字典中的。
;''准则11'' 分布独立性 : 关系数据库系统在引入分布数据或数据重新分布时保持逻辑不变。
;''准则12'' 无破坏准则 : 如果一个关系数据库系统具有一个低级语言,那么这个低级语言不能违背或绕过完整性准则。

■实时数据库是数据库系统发展的一个分支,它适用于处理不断更新的快速变化的数据及具有时间限制的事务处理。实时数据库技术是实时系统和数据库技术相结合的产物,研究人员希望利用数据库技术来解决实时系统中的数据管理问题,同时利用实时技术为实时数据库提供时间驱动调度和资源分配算法。然而,实时数据库并非是两者在概念、结构和方法上的简单集成。需要针对不同的应用需求和应用特点,对实时数据模型、实时事务调度与资源分配策略、实时数据查询语言、实时数据通信等大量问题作深入的理论研究。实时数据库系统的主要研究内容包括:
实时数据库模型
实时事务调度:包括并发控制、冲突解决、死锁等内容
容错性与错误恢复
访问准入控制
内存组织与管理
I/O与磁盘调度
主内存数据库系统
不精确计算问题
放松的可串行化问题
实时SQL
实时事务的可预测性
研究现状与发展实时数据库系统最早出现在1988年3月的ACM SIGMOD Record的一期专刊中。随后,一个成熟的研究群体逐渐出现,这标志着实时领域与数据库领域的融合,标志着实时数据库这个新兴研究领域的确立。此后,出现了大批有关实时数据库方面的论文和原型系统。人机交互技术与智能信息处理实验室实时数据库小组一直致力于实时系统、实时智能、实时数据库系统及相关技术的研究与开发,并取得了一定的成绩。

阅读全文

与分布数据库有哪些相关的资料

热点内容
巴中二手车交易市场哪里最好 浏览:801
买卖房屋交易合同是什么 浏览:840
如何修改贴吧本吧信息 浏览:75
数据机房属于什么专业 浏览:43
商务信息状态有哪些 浏览:834
涞水麻核桃哪个市场好 浏览:6
收到信息怎么回复好听一点 浏览:759
电脑怎么改交易密码 浏览:881
西刘屯菜市场在哪里 浏览:473
plc中程序步什么意思 浏览:788
什么是最小的信息单数单位 浏览:529
小米换苹果xs数据怎么迁移 浏览:251
咸鱼买电子产品要问什么 浏览:589
付款码怎么做小程序 浏览:20
设备技术岗位怎么分级 浏览:573
什么是冷烫金技术 浏览:26
泰州信息平面设计费用是多少 浏览:947
plc接头数据线哪里有 浏览:349
秦皇岛什么里海鲜市场 浏览:382
招商证券可转债怎么交易 浏览:65