1. 大数据是什么意思
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据其实就是海量资料巨量资料,这些巨量资料来源于世界各地随时产生的数据,在大数据时代,任何微小的数据都可能产生不可思议的价值。
(1)大数据试点是什么意思扩展阅读
1、大量。
大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。随着信息技术的高速发展,数据开始爆发性增长。
社交网络(微博、推特、脸书)、移动网络、各种智能工具,服务工具等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB。
脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2、多样。
广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等,这些平台都会通过对用户的日志数据进行分析,从而进一步推荐用户喜欢的东西。
日志数据是结构化明显的数据,还有一些数据结构化不明显,例如图片、音频、视频等,这些数据因果关系弱,就需要人工对其进行标注。
3、高速。
大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。
并且这些数据是需要及时处理的,因为花费大量资本去存储作用较小的历史数据是非常不划算的,对于一个平台而言,也许保存的数据只有过去几天或者一个月之内,再远的数据就要及时清理,不然代价太大。
基于这种情况,大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。
4、价值。
这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中。
挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
2. 大数据是什么意思
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
(2)大数据试点是什么意思扩展阅读:
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
3. 大数据是什么意思
大数据,顾名思义,就是指大量数据。或称巨量资料。它是一种现代分析决策手段或方法。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。
分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
4. 我国将开展农业农村大数据试点,你怎么看
新农村 新农民
近年来随着国家农村振兴策略的不断深入,各项利农惠农政策连接不断,特别是国家新农村政策的出台,让农村已经成为了一个可以大有作为的广阔天地!
作为农村的主力军,70后的新一代农民,随着国家社会经济的不断高速发展,也迎来了新的历史发展机遇。相比传统农民,70后的新一代农民普遍接受了良好的基础教育,对网络也不陌生,大部分都有过城市打工的经历,有些多年在城市里生活,已经不再是传统意义上的“农民”了,而是是具备现代经营理念的新一代“农人”!
再从长远来说,农村和农民都已经发生了根本性的变化,很多发达国家“农村”和“农民”已经是和“城市”,“市民”相对的一个概念,不再有身份认同和经济差别的内在区分了,我国以后也会是这种情况,现在已经有这种趋势了,这也是很多70后选择回农村生活的原因之一。
总之,现在很多70后选择回乡生活,不是被动的后撤,而是主动的追寻,寻找新的生活,新的农村,新的未来!这是一个可喜的现象!也是国家发展的潜力所在!
5. 大数据是什么意思
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大家经常听到大数据这个词,仿佛带了一个大字我们就难以理解其中的含义。那么,大数据是什么意思呢?
大数据又称巨量数据集合,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据特点
业界将大数据的特征归纳为4个V(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:
一,数据体量巨大。
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T。
二,数据类型繁多。
比如,网络日志、视频、图片、地理位置信息等等。
三,价值密度低,商业价值高。
四,处理速度快。
末尾这一点也是和传统的数据挖掘技术有着本质的不同。
6. 大数据是什么意思 大数据包括什么
大数据,在近几年越来越受到人们的关注,尽管大数据概念已经在各个行业中应用逐渐变得广泛起来,但是对于大多数的人来说,大数据概念在他们眼里还是模糊不清的,那么,什么叫大数据?大数据是什么意思呢?我查询整理了相关资料,希望能够帮助到大家!
由于计量、记录、预测生产生活过程的需要,人类对数据探寻的脚步从未停歇,从原始数据的出现,到科学数据的形成,再到大数据的诞生,走过了漫漫长路。
2011年5月,麦肯锡研究院发布报告——Big data: The nextfrontier for innovation, competition, and proctivity,第一次给大数据做出相对清晰的定义:“大数据是指其大小超出了常规数据库工具获取、储存、管理和分析能力的数据集。”
2015年8月31日,国务院《促进大数据发展行动纲要》指出:“大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”
《大数据白皮书2016》称:“大数据是新资源、新技术和新理念的混合体。从资源视角看,大数据是新资源,体现了一种全新的资源观;从技术视角看,大数据代表了新一代数据管理与分析技术;从理念的视角看,大数据打开了一种全新的思维角度。”
当前,业界公认的大数据有“4V特征,即:Volume(体量大)、Variety(种类多)、Velocity(速度快)和Value(价值高)。
大数据的作用在于在庞大的全量数据的基础上,通过算法模型,得出有意义的结果,进而进行资源配置的优化、现象的发现、未来的预测等。
大数据涉及由不同设备和应用程序产生的数据,主要包括以下几个领域:
1、黑匣子数据:它是直升机,飞机和喷气机等的组件。它捕捉飞行机组的声音,麦克风和耳机的录音,以及飞机的性能信息。
2、社会媒体数据:Facebook和Twitter等社交媒体保存着全球数百万人发布的信息和观点。
3、证券交易所数据:证券交易所数据保存关于由客户在不同公司的份额上做出的“买入”和“卖出”决定的信息。
4、电网数据:电网数据保持特定节点相对于基站消耗的信息。
5、运输数据:运输数据包括车辆的型号,容量,距离和可用性。
6、搜索引擎数据:搜索引擎从不同的数据库检索大量数据。
因此,大数据包含的数据是大量、高速度和可扩展的数据,其中,数据有三种类型:
(1)结构化数据:关系数据。
(2)半结构化数据:XML数据。
(3)非结构化数据:Word,PDF,文本,媒体日志