导航:首页 > 数据处理 > 上周工作总结数据分析是什么意思

上周工作总结数据分析是什么意思

发布时间:2023-03-05 16:48:48

‘壹’ 数据分析是什么

数据分析是对收集来的大量数据进行分析,提取有用信息,对数据加以详细研究和概括总结的过程。
1、数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥其数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析可帮助人们作出判断,以便采取适当行动。
2、数据分析有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。其过程概括起来包括明确分析目的与框架,数据收集,数据处理,数据分析,数据展现和撰写报告,也包括对比分析法,分组分析,交叉分析,平均分析法等。
3、数据分析能进行较高级的数据统计分析,录入数据库的设立,数据的校验,数据库的逻辑查错,对部分问卷的核对。而数据分析员是具有数理统计,经济学以及相关知识;能熟练使用EXCLE、SPSS、QUANVERT、SAS等统计软件。工作能力严谨的逻辑思维能力、学习能力、言语表达能力、管理能力,工作态度积极主动、工作认真、工作严谨。

‘贰’ 什么是数据分析

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

‘叁’ 什么是数据分析带你了解数据分析的日常工作

【导读】随着互联网事业的发展,以及不断更新的人工智能、物联网等技术,都离不开数据分析,那么什么是数据分析?为什么时下数据分析师是比较热门的高薪职业呢?很多小伙伴认为数据分析师就是简单的将数据收集,然后统计最后给出结论这样的工作,其实不然,下面小编带你了解数据分析的日常工作,让你对数据分析师有个更加全面的了解。

数据分析师的日常

日常一:不固定的工作时间

很多上班族的工作时间都是固定的,做五休二,朝九晚五,不免让人感到乏味。数据分析师却不然,他们没有固定的工作时间。因为数据分析师需要根据实时数据给出最新结论。换而言之,数据分析师就是要时刻准备着。

日常二:和数据打交道

数据分析师的日常就是与各种各样的数据打交道。他们需要花费大量的时间来收集、整理数据。这两个步骤看似简单,但是如果将步骤细分,就有些复杂了。这些步骤主要包括:

1.提取数据。2.合并资料。3.分析数据。4.寻找模式或趋势。5.使用各种工具,包括R,Tableau,Python,Matlab,Hive,Impala,PySpark,Excel,Hadoop,SQL和SAS。6.开发和测试新算法。7.试图简化数据问题。8.开发预测模型。9.建立数据可视化。10.写出结果并与他人分享。11.汇集概念证明……

但是这些任务都是数据分析师的次要任务,数据分析师的主要任务还是先确定问题,然后再通过尝试不同的办法来解决问题。

日常三:让数据变得通俗易懂

有人认为,数据分析师是可有可无的。这样的人往往不具备前瞻性。事实恰恰相反,数据分析师不仅仅需要建立模型,还需要解决问题。他们需要对数据进行处理,需要从小的角度看到全局,整理出简洁明了的报告,从而让外行人明白数据的含义。

日常四:不断汲取新的知识

数据分析师盯着电脑只会是在分析数据吗?

NO!他们可能是在:

1.浏览与行业相关的博客、新闻、通讯以及讨论区。

2.参加会议或者和其他数据分析师在线交流。

3.探索出新方法时,和同行共享新信息。......

除了在数据中挖掘宝藏信息,数据分析师还需要在数据分析领域不停地钻研。一个优秀的数据分析师,只有通过不断地学习新的知识,才能与时俱进,不被社会淘汰。

以上就是小编今天给大家整理分享关于“什么是数据分析?带你了解数据分析的日常工作”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

‘肆’ 问卷调查,“数据分析”具体指什么

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

(4)上周工作总结数据分析是什么意思扩展阅读

数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

参考资料来源:网络-数据分析

‘伍’ 什么是数据分析

数据分析(Data Analysis) 数据分析概念
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析与数据挖掘密切相关,但数据挖掘往往倾向于关注较大型的数据集,较少侧重于推理,且常常采用的是最初为另外一种不同目的而采集的数据。 数据分析的目的与意义
数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。
在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如J.开普勒通过分析行星角位置的观测数据,找出了行星运动规律。又如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。 数据分析的功能
数据分析主要包含下面几个功能:
1. 简单数学运算(Simple Math)
2. 统计(Statistics)
3. 快速傅里叶变换(FFT)
4. 平滑和滤波(Smoothing and Filtering)
5. 基线和峰值分析(Baseline and Peak Analysis)

数据分析的类型
在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国着名统计学家约翰·图基(John Tukey)命名。
定性数据分析:又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。

数据分析步骤
数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

数据分析过程实施
数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
一、识别信息需求
识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。 二、收集数据
有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑:
① 将识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据;
② 明确由谁在何时何处,通过何种渠道和方法收集数据;
③ 记录表应便于使用;
④ 采取有效措施,防止数据丢失和虚假数据对系统的干扰。

三、分析数据
分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有:
老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图;
新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图;

四、数据分析过程的改进
数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性:
① 提供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题;
② 信息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析;
③ 收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通;
④ 数据分析方法是否合理,是否将风险控制在可接受的范围;
⑤ 数据分析所需资源是否得到保障。

阅读全文

与上周工作总结数据分析是什么意思相关的资料

热点内容
数据线灰蓝是什么意思 浏览:142
天猫产品如何查总销量 浏览:183
如何查询银行贵金属交易信息 浏览:709
地区代理商有什么条件 浏览:947
店铺交易税怎么减少 浏览:243
产品通孔什么意思 浏览:704
半永久纹绣怎么开拓市场 浏览:400
产品担当薪水如何 浏览:124
为什么注册商标要找代理公司 浏览:74
交易策略需要实盘多久才有效 浏览:544
公司跨省地址代理变更多少钱 浏览:204
产品保修怎么去 浏览:706
代理期间工资如何发放 浏览:906
学而思程序bug怎么反馈 浏览:766
怎么代理一个早餐店 浏览:504
信息存储技术的发展历程哪些 浏览:415
信息技术课怎么退出界面 浏览:815
市场法中参照物差异有哪些 浏览:94
宝鸡鸟市场在哪里 浏览:578
宁波三山村菜市场怎么样 浏览:511