① 数据清洗的内容有哪些
数据清洗的内容包括:选择子集、列名重命名、缺失值处理、数据类型转换、异常值处理以及数据排序。
1、选择子集
在数据分析的过程中,有可能数据量会非常大,但并不是每一列都有分析的价值,这时候就要从这些数据中选择有用的子集进行分析,这样才能提高分析的价值和效率。
2、列名重命名
在数据分析的过程中,有些列名和数据容易混淆或者让人产生歧义。
3、缺失值处理
获取的数据中很可能存在这缺失值,这会对分析的结果造成影响。
4、数据类型的转换
在导入数据的时候为了防止导入不进来,python会强制转换为object类型,然是这样的数据类型在分析的过程中不利于运算和分析。
数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
数据清洗方法:一般来说,数据清理是将数据库精简以除去重复记录,并使剩余部分转换成标准可接收格式的过程。数据清理标准模型是将数据输入到数据清理处理器,通过一系列步骤“ 清理”数据,然后以期望的格式输出清理过的数据。数据清理从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据等问题。
② 数据分析中如何清洗数据
数据分析中数据集通常包含大量数据,这些数据可能以不易于使用的格式存储。因此,数据分析师首先需要确保数据格式正确并符合规则集。
此外,合并来自不同来源的数据可能很棘手,数据分析师的另一项工作是确保所得到的信息合并有意义。
数据稀疏和格式不一致是最大的挑战–这就是数据清理的全部内容。数据清理是一项任务,用于识别不正确,不完整,不准确或不相关的数据,修复问题,并确保将来会自动修复所有此类问题,数据分析师需要花费60%的时间去组织和清理数据!
数据分析中数据清理有哪些步骤?
以下是经验丰富的开发团队会采用的一些最常见的数据清理步骤和方法:
处理丢失的数据
标准化流程
验证数据准确性
删除重复数据
处理结构错误
摆脱不必要的观察
扩展阅读:
让我们深入研究三种选定的方法:
处理丢失的数据——忽略数据集中的丢失值,是一个巨大的错误,因为大多数算法根本不接受它们。一些公司通过其他观察值推算缺失值或完全丢弃具有缺失值的观察值来解决此问题。但是这些策略会导致信息丢失(请注意,“无价值”也会告诉我们一些信息。如果公司错过了分类数据,则可以将其标记为“缺失”。缺失的数字数据应标记为0,以进行算法估计)在这种情况下的最佳常数。
结构性错误——这些是在测量,传输数据期间出现的错误,以及由于数据管理不善而引起的其他问题。标点符号不一致,错别字和标签错误是这里最常见的问题。这样的错误很好地说明了数据清理的重要性。
不需要的观察——处理数据分析的公司经常在数据集中遇到不需要的观察。这些可以是重复的观察,也可以是与他们要解决的特定问题无关的观察。检查不相关的观察结果是简化工程功能流程的好策略-开发团队将可以更轻松地建立模型。这就是为什么数据清理如此重要的原因。
对于依赖数据维护其运营的企业而言,数据的质量至关重要。举个例子,企业需要确保将正确的发票通过电子邮件发送给合适的客户。为了充分利用客户数据并提高品牌价值,企业需要关注数据质量。
避免代价高昂的错误:
数据清理是避免企业在忙于处理错误,更正错误的数据或进行故障排除时增加的成本的最佳解决方案。
促进客户获取:
保持数据库状态良好的企业可以使用准确和更新的数据来开发潜在客户列表。结果,他们提高了客户获取效率并降低了成本。
跨不同渠道理解数据:
数据分析师们在进行数据清理的过程中清除了无缝管理多渠道客户数据的方式,使企业能够找到成功开展营销活动的机会,并找到达到目标受众的新方法。
改善决策过程:
像干净的数据一样,无助于促进决策过程。准确和更新的数据支持分析和商业智能,从而为企业提供了更好的决策和执行资源。
提高员工生产力:
干净且维护良好的数据库可确保员工的高生产率,他们可以从客户获取到资源规划的广泛领域中利用这些信息。积极提高数据一致性和准确性的企业还可以提高响应速度并增加收入。
③ 数据分析中如何清洗数据
在数据分析中我们重点研究的是数据,但是不是每个数据都是我们需要分析的,这就需要我们去清洗数据,通过清洗数据,这样我们就能够保证数据分析出一个很好的结果,所以说一个干净的数据能够提高数据分析的效率,因此,数据清洗是一个很重要的工作,通过数据的清洗,就能够统一数据的格式,这样才能够减少数据分析中存在的众多问题,从而提高数据的分析的效率。但是清洗数据需要清洗什么数据呢?一般来说,清洗数据的对象就是缺失值、重复值、异常值等。
首先给大家说明一下什么是重复值,所谓重复值,顾名思义,就是重复的数据,数据中存在相同的数据就是重复数据,重复数据一般有两种情况,第一种就是数据值完全相同的多条数据记录。另一种就是数据主体相同但匹配到的唯一属性值不同。这两种情况复合其中的一种就是重复数据。那么怎么去除重复数据呢?一般来说,重复数据的处理方式只有去重和去除两种方式,去重就是第一种情况的解决方法,去除就是第二种情况的解决方法。
其次给大家说一下什么是异常值,这里说的异常值就是指一组测试值中宇平均数的偏差超过了两倍标准差的测定值。而与平均值的偏差超过三倍标准差的测定值则被称为高度异常值。对于异常值来说,我们一般不作处理,当然,这前提条件就是算法对异常值不够敏感。如果算法对异常值敏感了怎么处理异常值呢?那么我们就需要用平均值进行替代,或者视为异常值去处理,这样可以降低数据异常值的出现。
而缺失值也是数据分析需要清理的对象,所谓缺失值就是数据中由于缺少信息导致数据的分组、缺失被称为缺失值,存在缺失值的数据中由于某个或者某些数据不是完整的,对数据分析有一定的影响。所以,我们需要对缺失值进行清理,那么缺失值怎么清理呢?对于样本较大的缺失值,我们可以直接删除,如果样本较小,我们不能够直接删除,因为小的样本可能会影响到最终的分析结果。对于小的样本,我们只能通过估算进行清理。
关于数据分析需要清楚的数据就是这篇文章中介绍的重复值、异常值以及缺失值,这些无用的数据大家在清理数据的时候一定要注意,只有这样才能够做好数据分析。最后提醒大家的是,大家在清理数据之前一定要保存好自己的原始数据,这样我们才能够做好数据的备份。切记切记。
④ 数据挖掘中常用的数据清洗方法有哪些
数据清洗目的主要有:
①解决数据质量问题;
②让数据更适合做挖掘;
数据清洗是对数据审查过程中发现的明显错误值、缺失值、异常值、可疑数据,选用一定方法进行“清洗”,为后续的数据分析做准备。
数据清洗的方法有:
①数据数值化
对存在各种不同格式的数据形式的原始数据,对其进行标准化操作。对字符串取值,按照ANSI码值求和得到字符串的值,如果值太大,取一个适当的质数对其求模。
②标准化 normalization
对整体数据进行归一化工作,利用min-max标准化方法将数据都映射到一个指定的数值区间。
③数据降维
原始数据存在很多维度,使用主成分分析法对数据的相关性分析来降低数据维度。
④数据完整性
数据完整性包括数据缺失补数据和数据去重;
补全数据的方法有:
通过身份证件号码推算性别、籍贯、出生日期、年龄(包括但不局限)等信息补全;
通过前后数据补全;
实在补不全的,对数据进行剔除。
数据去重的方法有:
用sql或者excel“去除重复记录”去重;
按规则去重,编写一系列的规则,对重复情况复杂的数据进行去重。
⑤ 数据清洗需要清洗哪些数据
数据清洗的一般步骤:分析数据、缺失值处理、异常值处理、去重处理、噪音数据处理。在大数据生态圈,有很多来源的数据ETL工具,但是对于公司内部来说,稳定性、安全性和成本都是必须考虑的。
对于数据值缺失的处理,通常使用的方法有下面几种:
1、删除缺失值
当样本数很多的时候,并且出现缺失值的样本在整个的样本的比例相对较小,这种情况下,我们可以使用最简单有效的方法处理缺失值的情况。那就是将出现有缺失值的样本直接丢弃。这是一种很常用的策略。
2、均值填补法
根据缺失值的属性相关系数最大的那个属性把数据分成几个组,然后分别计算每个组的均值,把这些均值放入到缺失的数值里面就可以了。
3、热卡填补法
对于一个包含缺失值的变量,热卡填充法的做法是:在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有变量按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。
⑥ 4.什么是数据清理,数据清理一般有哪些内容
数据清理用来自多个联机事务处理 (OLTP) 系统的数据生成数据仓库进程的一部分。拼写、两个系统之间冲突的拼写规则和冲突的数据(如对于相同的部分具有两个编号)之类的错误。数据清理工作的目的是不让有错误或有问题的数据进入运算过程,一般在计算机的帮助下完成,包括数据有效范围的清理、数据逻辑一致性的清理和数据质量的抽查。