导航:首页 > 数据处理 > 分析数据时应该注意哪些参数

分析数据时应该注意哪些参数

发布时间:2023-02-22 00:51:26

数据分析需要掌握哪些知识

一. 数据分析,需要掌握哪些必备的统计学知识


⑵ 实验数据处理要注意哪些

实验报告撰写要求
1. 实验报告和实验预习报告使用同一份实验报告纸,是在预习报告的基础上继续补充相关内容就可以完成的,不作重复劳动,因此需要首先把预习报告做的规范、全面。
2. 根据实验要求,在实验时间内到实验室进行实验时,一边测量,一边记录实验数据。但是为了使报告准确、美观,此时应该把实验测量数据先记录在草稿纸上。等到整理报告时再抄写到实验报告纸上,以避免错填了数据,造成修改,把报告写得很乱。
3. 在实验中,如果发生实验测量数据与事先的计算数值不符,甚至相差过大,此时应该找出原因,是原来的计算错误,还是测量中有问题,不能不了了之,这样只能算是未完成本次实验。
4. 实验报告不是简单的实验数据记录纸,应该有实验情况分析,要把通过实验所测量的数据与计算值加以比较,如果误差很小(一般5%以下)就可以认为是基本吻合的。如果误差较大就应该有误差分析,找出原因。
5. 在实验报告上应该有每一项的实验结论,要通过具体实验内容和具体实验数据分析作出结论(不能笼统的说验证了某某定理)。
6. 设计性、综合性实验要画出所设计的电路图,标出所选出和确定的电路参数。要有验算过程和必要的设计说明。
7. 必要时需要绘制曲线,曲线应该刻度、单位标注齐全,曲线比例合适、美观,并针对曲线作出相应的说明和分析。
8. 在报告的最后要完成指导书上要求解答的思考题。
9. 实验报告在上交时应该在上面有实验指导教师在实验中给出的预习成绩和操作成绩,并有指导老师的签名,否则报告无效。
10. 希望每个同学认真完成好实验报告,这是培养和锻炼综合和总结能力的重要环节,是为课程设计、毕业设计论文的撰写打下一个基础,对以后参加工作和科学研究也是大有益处的。

⑶ 一般对采集的数据进行分析 都应该有哪些功能,或者哪些参数

实时数据显示、实时曲线、历史曲线、历史报表、平均值、峰值、同比、环比等。

大数据分析要注意哪些因素

获得合适的数据专家


培养合适的人才至关重要。(大数据不仅仅涉及技术和平台。)企业需要对合适的人员进行投资,这些人员应清楚了解企业的业务目标并相应地利用大数据。需要在技术上和分析上都配备有能力的正确的人,他们能够理解和理解数据分析所引发的相互关系和趋势。再有企业领导者不仅应培训内部数据处理资源,还应引进新的人才。


定义事项


大数据确实非常大,可以通过多种方式进行分析。但是需要谨记模糊的数据可能成为大数据计划的巨大杀手。重要的是要绝对清晰地了解目标,以及需要以何种方式分析哪些数据成分,以获得什么样的见解。还原主义—将复杂问题分解为各个组成部分的实践是最佳实践之一,并且只有在明确目标的情况下才能实施,该目标将定义流程。这将定义要对数据执行的操作。


通过测试优化重点


测试是IT领导者经常忽略的因素。每当实施新技术时,测试并进一步调整过程以获取所需的内容就很重要。在某些行业中,这称为大型测试。只有通过培养实验文化才能获得最佳的关注。鲜为人知的事实是,数据驱动的实验使人们能够找到新的数据解释方式和创新的基于数据的产品创建方式。


获取和应用可行的见解


尽管“可行的见解”是一个经常被重复使用的术语,但在实施级别仍然被忽略。首席信息官需要从大数据分析中提取可操作的信息。向决策者提供经过过滤的相关信息在行业中具有极其重要的意义。此外,管理人员需要理解,更改或创建包含从大数据中获得的见解的流程。

⑸ 数据分析中要注意的统计学问题

一、均值的计算

在处理数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,往往我们会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的。

这是因为作为描述随机变量总体大小特征的统计量有算术平均值、几何平均值和中位数等多个。至于该采用哪种均值,不能根据主观意愿随意确定,而要根据随机变量的分布特征确定。

反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其数学期望就是其算术平均值。此时,可用算术平均值描述随机变量的大小特征;如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则几何平均值就是数学期望的值。此时,就可以计算变量的几何平均值;如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。此时,可用中位数来描述变量的大小特征。

因此,我们不能在处理数据的时候一律采用算术平均值,而是要视数据的分布情况而定。

二、直线相关与回归分析

这两种分析,说明的问题是不同的,既相互又联系。在做实际分析的时候,应先做变量的散点图,确认由线性趋势后再进行统计分析。一般先做相关分析,只有在相关分析有统计学意义的前提下,求回归方程才有实际意义。一般来讲,有这么两个问题值得注意:

一定要把回归和相关的概念搞清楚,要做回归分析时,不需要报告相关系数;做相关分析的时候,不需要计算回归方程。

相关分析中,只有对相关系数进行统计检验(如t检验),P<0.05时,才能一依据r值的大小来说明两个变量的相关程度。必须注意的是,不能将相关系数的假设检验误认为是相关程度的大小。举个例子:当样本数量很小,即使r值较大(如3对数据,r=0.9),也可能得出P>0.05这种无统计学意义的结论;而当样本量很大,如500,即使r=0.1,也会有P<0.05的结果,但这种相关却不具有实际意义。因此,要表明相关性,除了要写出r值外,还应该注明假设检验的P值。

三、相关分析和回归分析之间的区别

相关分析和回归分析是极为常用的2种数理统计方法,在环境科学及其它研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,因此在应用中我们很容易将二者混淆。

最常见的错误是,用回归分析的结果解释相关性问题。例如,将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。

相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种方法存在本质的差别。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。

实际上在相关分析中,两个变量必须都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析。而回归分析中,因变量肯定为随机变量,而自变量则可以是普通变量(有确定的取值)也可以是随机变量。

很显然,当自变量为普通变量的时候,这个时候你根本不可能回答相关性的问题;当两个变量均为随机变量的时候,鉴于两个随机变量客观上存在“相关性”问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此这又回到了问题二中所讲的,如果你要以预测为目的,就不要提相关系数;当你以探索两者的“共变趋势”为目的,就不要提回归方程。

回归分析中的R2在数学上恰好是Pearson积矩相关系数r的平方。因此我们不能错误地理解R2的含义,认为R2就是 “相关系数”或“相关系数的平方”。这是因为,对于自变量是普通变量的时候,2个变量之间的“相关性”概念根本不存在,又谈什么“相关系数”呢?

四、相关分析中的问题

相关分析中,我们很容易犯这么一个错误,那就是不考虑两个随机变量的分布,直接采用Pearson 积矩相关系数描述这2个随机变量间的相关关系(此时描述的'是线性相关关系)。

关于相关系数,除有Pearson 积矩相关系数外,还有Spearman秩相关系数和Kendall秩相关系数等。其中,Pearson积矩相关系数可用于描述2个随机变量的线性相关程度,Spearman或Kendall秩相关系数用来判断两个随机变量在二维和多维空间中是否具有某种共变趋势。

因此我们必须注意的是,Pearson 积矩相关系数的选择是由前提的,那就是2个随机变量均服从正态分布假设。如果数据不服从正态分布,则不能计算Pearson 积矩相关系数,这个时候,我们就因该选择Spearman或Kendall秩相关系数。

五、t检验

用于比较均值的t检验可以分成三类:第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组检验,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布。

t检验是目前在科学研究中使用频率最高的一种假设检验方法。t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于我们对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

常见错误:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

正确做法:当两样本均值比较时,如不满足正态分布和方差齐性,应采用非参检验方法(如秩检验);两组以上的均值比较,不能采用t检验进行均值之间的两两比较。

因此我们必须注意,在使用t检验的时候,一定要注意其前提以及研究目的,否则,会得出错误的结论。

六、常用统计分析软件

国际上已开发出的专门用于统计分析的商业软件很多,比较着名有SPSS(Statistical Package for SocialSciences)、SAS(Statistical AnalysisSystem)、BMDP和STATISTICA等。其中,SPSS是专门为社会科学领域的研究者设计的(但是,此软件在自然科学领域也得到广泛应用);BMDP是专门为生物学和医学领域研究者编制的统计软件。

当然,excel也能用于统计分析。单击“工具”菜单中的“数据分析”命令可以浏览已有的分析工具。如果在“工具”菜单上没有“数据分析”命令,应在“工具”菜单上运行“加载宏”命令,在“加载宏”对话框中选择“分析工具库”。

特别推荐一款国产软件——DPS,其界面见附图。其功能较为强大,除了拥有统计分析功能,如参数分析,非参分析等以外,还专门针对一些专业编写了专业统计分析模块,随机前沿面模型、数据包络分析(DEA)、顾客满意指数模型(结构方程模型)、数学生态、生物测定、地理统计、遗传育种、生存分析、水文频率分析、量表分析、质量控制图、ROC曲线分析等内容。有些不是统计分析的功能,如模糊数学方法、灰色系统方法、各种类型的线性规划、非线性规划、层次分析法、BP神经网络、径向基函数(RBF)等,在DPS里面也可以找到。

⑹ 探讨在数据分析中要注意哪些要点

结合客户中心的管理实践,通常在分析中要关注以下几个要点。

(1)数据的分布比数据的均值重要。 由于个体对整体的代表性较弱,客户中心的很多数据用均值表述,如接通率是一个时段内接通的数量比上整体需求的数量,一个班组的质检成绩是班组内所有成员的平均值,均值可以代表整体,但忽视了其中个体的独特性。以接通率为例,全天的接通率是85%,看起来很高,但这个85%很可能是由每个时段的90%、80%、95%、50%,甚至包括0平均而来的,如果再细分到不同技能和更小时段(如5分钟、15分钟)差异更大,这就像我和“首富”平均出来一个没有任何意义的财富均值一样。所以必须要经常对数据进行分布状态分析,关注偏离均值较大的数据。在客户中心的运营管理中,如果某些偏离较大的数据得到了改善,整体均值也会相应的提高,这也是改善绩效的一个重要方法。

(2)自身的进步比和他人的比较重要。 经常有同行找我要某些数据,借以了解自己的运营水平。这在客户中心初始运营阶段或者新开辟一个领域时是必要的,可以帮助自己建立一个明确的参考体系,但对于一个已经运营多年的中心来说,这些数据的意义不大。不要说不同行业的客户中心数据千差万别,就是同一个行业也差异巨大,甚至同一个中心,由于自身的运营策略原因,数据也会剧烈波动。这样的单点数据值和自己比较起来没有任何意义,经常是徒增烦恼。

例如,对客户满意度来说,不同行业通常是不同的,即使同一个行业,广东和山东的客户满意度会差异巨大,汕头和广州的客户满意度也同样有差异。不同客户中心的运营管理方法和策略,值得相互学习和借鉴,但运营的具体数据的借鉴意义相对较小。在运营中,重要的是不断和自己的过去进行比较,可以进行环比和同比,甚至把过去几年的同类型数据放在一起比较,同时对数据的偏差要有明确的解释。

(3)数据的波动和趋势比数据本身重要。 客户中心的运营管理中一般有两个方向,即平稳和持续改进。从数据上反映这两个要求,就是一条持续向上的平滑曲线,波动要尽量小,同时趋势要向好。对于一些有目标值的数据,要尽量保持在目标值之上的平滑曲线。事实上,尽管偶然的小偏差并不重要,但要关注这些偏离是否经常出现,以及偏差范围是否在可接受范围之内。

即使是一个没有经验值的运营指标,只要保持数据是持续向上的平滑曲线,那么最终也可以达到一个非常优秀的运营水准。

(4)次品率比成品率重要。 在生产领域大都关注成品率,成品率的计算方法是1减去废品率,看起来两个指标是一样的,只是表示方式不同,但当一个指标涉及到人的因素时这种计算方法就不再适用了。

以接通率为例,很多客户中心都很困惑,为什么我们每天的接通率都很高,但客户老是说我们很难接通呢?这有两个方面的原因:

首先是计算方式问题,一个是系统的数据,一个是客户感知的数据。例如某天接通率是85%,也就是100次呼叫有15次没有接通。假设15个没有接通的客户中有10个再次呼叫(这些再次呼叫量已经计入总呼叫量),结果接通了,那么系统统计的接通率是85%。但按照单个客户来计算就不一样了,不重复的客户数是90个而不是100个(假设所有接通客户都没有重复拨打),那10个再次呼叫才接通的客户会认为热线的接通率有问题,调查时会认为热线“很难接通”,如果全量调查当天所有客户的接通率就不会是85%,而是(90-15)/90=83%。

其次是人的一个特性,即对负面信息更敏感,记得更牢。相比正面的接通经历,负面的未接通经历,衰减更慢,更加难忘,一次未接通需要多次的接通来修正。当问客户接通感知时,负面的记忆被唤起,正面的记忆被弱化。

(5)价值比收入重要。 谈到价值,人们通常想到的衡量标准往往是钱,是收入,但价值不应该仅仅用钱来衡量,这就像评价一个孩子是不是好孩子时不能光看成绩一样,应该从多个角度,更全面地进行评价。如果只用学习成绩来评价一个以钢琴或者绘画为特长的孩子,那么不公平是显而易见的。对于大部分客户中心尤其是呼入型的中心来说,收入绝非所长,客户中心真正的价值主要应该体现在对客户的维系上,这也是组织建立客户中心的目的,要通过与客户的每一次接触提高客户的忠诚度,挖掘客户的可能需求,在服务中进行营销的目的也应该是维系客户。

当客户中心的管理者认为可以通过收入展现自己的价值时,是踏上了一条“不归路”,是在用自己最不擅长的能力去与市场部门、营销部门、营业厅的强项PK。结果就是员工越来越苦,中心的运营开始不稳定,业绩越来越差。

数据本身没有意义,数据通过分析后对运营进行指导才有意义,运营是要围绕着目标来开展的。

-END-

目录

自序

导言

第一部分:情绪与压力管理

第一单元:潜力与自我效能

第二单元:认识情绪与压力

第三单元:管理情绪与压力的方法

第二部分:客户中心实用管理心理学

第四单元:激发员工的积极性

第五单元:团队管理

第六单元:领导型管理者的关键能力

第三部分:客服管理中的情商领导力

第七单元:用同理心理解他人

第八单元:客户中心的人际关系管理

第四部分:客户中心文化及指标管理

第九单元:客服文化及落地

第十单元:客服中心的指标管理

10.1客户中心的指标体系

10.2客户中心的数据及分析

客户中心的数据

数据分析的要点

10.3制定目标和实现目标

制定目标的SMART原则

制定计划

10.4单元小结

后记(纸质版书中不幸被遗漏)

⑺ 大数据分析有哪些注意事项

1、不注重数据的精确


也有的一些相关的大数据文章说明不需要太在乎数据的精确度,或者说不准确最后形成报告可以改的心理,大数据分析基本要求就是严谨以及精确。


2、不能粗略计算


现阶段进行大数据分析都是依托于相应的大数据分析工具,可以进行专业的数据分析,不能进行粗略的计算,也不会得到想要的结果。


3、数据越多越好


不是数据多就是好的,如果数据不是分析维度里面需要的数据,反而会加大分析的难度和准确度。


关于大数据分析有哪些注意事项,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑻ 数据分析有哪些注意事项

1. 不注意数据的准确性


也有一些相关的大数据文章,说明我们不需要太在意数据的准确性,或者说数据不准确,最后形成报告可以改的心理。大数据分析的基本要求是精确性和准确性。


2. 不能粗略计算


现阶段,大数据分析是基于相应的大数据分析工具,可以进行专业的数据分析,不能粗略计算,也不会得到预期的结果。


3. 数据越多越好


如果没有足够的数据,就越好。如果数据不是分析维度所需要的数据,则会增加分析的难度和准确性。


关于数据分析有哪些注意事项,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑼ 数据分析需要掌握哪些知识

数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

阅读全文

与分析数据时应该注意哪些参数相关的资料

热点内容
如何做交易趋势赚钱 浏览:719
产品的条纹码怎么办理 浏览:937
滑水游戏小程序叫什么 浏览:206
代理补缴社保如何办理 浏览:820
配送招投标信息网哪个最全 浏览:130
出版书籍需要什么程序 浏览:919
怎么鉴别美瞳的代理 浏览:561
条码技术为什么流行 浏览:26
三体什么技术最好 浏览:497
在网上卖产品怎么选品 浏览:538
什么软件可以查看jpg的数据 浏览:127
德州批发市场有哪些 浏览:437
80后学点什么技术谋生 浏览:384
一卡通业务怎么找代理 浏览:335
python如何替换excel单元格数据 浏览:275
红米版本信息在哪里 浏览:285
qq怎么样设置时间信息 浏览:540
容桂代理记账有哪些 浏览:735
立邦代理怎么做 浏览:301
要做程序员该怎么选方向 浏览:875