导航:首页 > 数据处理 > 如何整理截面数据

如何整理截面数据

发布时间:2023-02-16 19:44:23

㈠ 截面数据的注意问题

在分析横截面数据时,应主要注意两个问题:
一是异方差问题,由于数据是在某一时期对个体或地域的样本的采集,不同个体或地域本身就存在差异;
二是数据的一致性,主要包括变量的样本容量是否一致、样本的取样时期是否一致、数据的统计标准是否一致。

㈡ 面板数据都是自己整理吗

面板数据都是自己整理。论文需要用面板数据,整理出来的是截面数据。面板数据是指既有截面数据又有时间序列的数据,其存在截面数据没有优势,在用stata进行面板数据的估计时,选择xtreg命令进行拟合。在面板数据进行模型估计前,要进行面板数据的维度确定。面板数据既有截面数据又有时间序列,而stata不能自动识别,必须使得stata得知哪一部分是截面数据,哪一部分是时间序列。

㈢ 适用于截面数据的统计方法有哪些

1、计量资料的统计方法

分析计量资料的统计分析方法可分为参数检验法和非参数检验法。

参数检验法主要为t检验和方差分析(ANOVA,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。

2、计数资料的统计方法

计数资料的统计方法主要针对四格表和R×C表利用检验进行分析。

3、等级资料的统计方法

等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。在临床医学资料中,常遇到一些定性指标,如临床疗效的评价、疾病的临床分期、病症严重程度的临床分级等,对这些指标常采用分成若干个等级然后分类计数的办法来解决它的量化问题,这样的资料统计上称为等级资料。

(3)如何整理截面数据扩展阅读

主要的检验异方差性的方法有:图示检验法、等级相关系数检验法、戈里瑟检验(Glejser Test)、巴特列特检验、布鲁奇-培根检验(The Breusch-Pagan Test)、戈德菲尔德-匡特检验(The Goldfeld-Quandt Test)、沃特检验(Wald Test)、拉格朗日乘数检验、似然比检验、怀特大样本检验等。

这些检验方法在性能上各有优劣,互为补充,在具体操作时宜结合使用,相互验证,不应单凭个别检验结论做出歧视性或排他性的断言。



㈣ 截面数据的简介

截面数据是不同主体在同一时间点或同一时间段的数据,那么你对截面数据了解多少呢?以下是由我整理关于什么是截面数据的内容,希望大家喜欢!

截面数据的简介

截面数据(cross-section data)是指在同一时间(时期或时点)截面上反映一个总体的一批(或全部)个体的同一特征变量的观测值,是样本数据中的常见类型之一。例如,工业普查数据,人口普查数据,家庭收入调查数据。在数学,计量经济学中应用广泛。

经济计量学专用名词。横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。与时序数据相比较,其区别在与组成数据列的各个数据的排列标准不同,时序数据是按时间顺序排列的,横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。与时间数据完全一样,横截面数据的统计口径和计算方法(包括价值量的计算方法)也应当是可比的。

截面数据是样本数据中的常见类型之一。例如,工业普查数据,人口普查数据,家庭收入调查数据。在数学,计量经济学中应用广泛。

截面数据(cross-section data)是指在同一时间(时期或时点)截面上反映一个总体的一批(或全部)个体的同一特征变量的观测值,是样本数据中的常见类型之一。例如,工业普查数据,人口普查数据,家庭收入调查数据。在数学,计量经济学中应用广泛。

经济计量学专用名词。横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。与时序数据相比较,其区别在与组成数据列的各个数据的排列标准不同,时序数据是按时间顺序排列的,横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。与时间数据完全一样,横截面数据的统计口径和计算方法(包括价值量的计算方法)也应当是可比的。

截面数据的注意问题

在分析横截面数据时,应主要注意两个问题:

一是异方差问题,由于数据是在某一时期对个体或地域的样本的采集,不同个体或地域本身就存在差异;

二是数据的一致性,主要包括变量的样本容量是否一致、样本的取样时期是否一致、数据的统计标准是否一致。

截面数据的检验方法

对异方差的检验大多集中于线性模型情形,检验方法很多。主要的检验异方差性的方法有:图示检验法、等级相关系数检验法、戈里瑟检验(Glejser Test)、巴特列特检验、布鲁奇-培根检验(The Breusch-Pagan Test)、戈德菲尔德-匡特检验(The Goldfeld-Quandt Test)、沃特检验(Wald Test)、拉格朗日乘数检验、似然比检验、怀特大样本检验等。这些检验方法在性能上各有优劣,互为补充,在具体操作时宜结合使用,相互验证,不应单凭个别检验结论做出歧视性或排他性的断言。

数据的分类

按性质分为

①定位的,如各种坐标数据;

②定性的,如表示事物属性的数据(居民地、河流、道路等);

③定量的,反映事物数量特征的数据,如长度、面积、体积等几何量或重量、速度等物理量;

④定时的,反映事物时间特性的数据,如年、月、日、时、分、秒等。

按表现形式分为

①数字数据,如各种统计或量测数据。数字数据在某个区间内是离散的值;

②模拟数据,由连续函数组成,是指在某个区间连续变化的物理量,又可以分为图形数据(如点、线、面)、符号数据、文字数据和图像数据等,如声音的大小和温度的变化等。

按记录方式分为

㈤ 什么是横截面数据分析举个例子啊~谢谢

一种观察性研究,其分析从特定群体或代表性子集收集的数据时间点,即横截面数据。横截面数据,计量经济学专用名词。横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。

在经济学中,横断面研究通常涉及使用横截面回归,以便在给定时间点上对一个或多个独立变量对感兴趣的因变量的因果效应的存在和大小进行排序。它们不同于时间序列分析,其中一个或多个经济总量的行为通过时间跟踪。



(5)如何整理截面数据扩展阅读

横截面数据按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。与时间数据完全一样,横截面数据的统计口径和计算方法(包括价值量的计算方法)也应当是可比的。

例如,为了研究某一行业各个企业的产出与投入的关系,我们需要关于同一时间截面上各个企业的产出Q和劳动L、资本投入K的横截面数据。这些数据的统计对象显然是不同的,因为是不同企业的数据。

但是关于产出Q和投入L、K的解释、统计口径和计算方法仍然要求相同,即本企业的Q、L、K在统计上要求可比。

㈥ SPSS软件如何处理截面数据,能详细一点吗,推荐一种方法就可以,非常感谢啊!!!!1

采用非参数检验的方法吧,能看出这大批量数据的差异性,因为截面数据的本身样本的个体就有差异。
可以用SPSS里的K个独立样本的非参数检验。

㈦ 截面数据怎么补

l.varname表示滞后一阶,l2.varname表示滞后二阶,以此类推
下面是更多方法:
(一)个案剔除法
最常见、最简单的处理缺失数据的方法是用个案剔除法也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。
(二)均值替换法
将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。
(三)热卡填充法
对于一个包含缺失值的变量,热卡填充法在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有个案按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。与均值替换法相比,利用热卡填充法插补数据后,其变量的标准差与插补前比较接近。但在回归方程中,使用热卡填充法容易使得回归方程的误差增大,参数估计变得不稳定,而且这种方法使用不便,比较耗时。
(四)回归替换法
回归替换法首先需要选择若干个预测缺失值的自变量,然后建立回归方程估计缺失值,即用缺失数据的条件期望值对缺失值进行替换。与前述几种插补方法比较,该方法利用了数据库中尽量多的信息,而且一些统计软件(如Stata)也已经能够直接执行该功能。但该方法也有诸多弊端,第一,这虽然是一个无偏估计,但是却容易忽视随机误差,低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。第二,研究者必须假设存在缺失值所在的变量与其他变量存在线性关系,很多时候这种关系是不存在的。
(五)多重替代法
首先,多重估算技术用一系列可能的值来替换每一个缺失值,以反映被替换的缺失数据的不确定性。然后,用标准的统计分析过程对多次替换后产生的若干个数据集进行分析。最后,把来自于各个数据集的统计结果进行综合,得到总体参数的估计值。由于多重估算技术并不是用单一的值来替换缺失值,而是试图产生缺失值的一个随机样本,这种方法反映出了由于数据缺失而导致的不确定性,能够产生更加有效的统计推断。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断。

㈧ 跨国面板数据怎么整理

短面板处理。跨国面板数据短面板整理,面板数据是指既有截面数据又有时间序列的数据,因此其存在截面数据没有的优势,在用stata进行面板数据的估计时,一般选择xtreg命令进行拟合。本节主要论述短面板的stata实现,即时间维度T相对于截面数n较小的数据。

阅读全文

与如何整理截面数据相关的资料

热点内容
京深海鲜大市场在哪个区 浏览:15
流量产品券怎么用 浏览:994
宁波冻品市场在哪里 浏览:945
什么是威望数据 浏览:575
知道公司怎么买产品 浏览:189
监理员如何学习施工技术 浏览:731
税收信息采集多久通知 浏览:928
产后丰胸什么产品好 浏览:84
为什么会收到etc收费信息 浏览:750
为什么直播间看不到信息 浏览:964
提前进入左转待转区多久收到信息 浏览:20
渤海交易所怎么样 浏览:132
皮肤发痒用什么化工产品 浏览:83
没技术的人如何养家糊口 浏览:880
什么叫退市交易整理期 浏览:7
身份信息发到多少人的群里算侵权 浏览:598
modbustcp如何读取数据的 浏览:210
有什么好项目可以做代理商理财 浏览:637
上征信要什么程序 浏览:951
小学教资信息技术是什么 浏览:765