㈠ 稳定性是什么意思
稳定性是什么意思
稳定性是什么意思?化学比较好的朋友都知道“稳定性”这个词语,很多地方都会看到这三个字,被用在很多不同的地方,有很多朋友不知道稳定性是什么。下面就给大家讲讲稳定性是什么意思。
一、什么是稳定性
稳定性是指“测量仪器保持其计量特性随时间恒定的能力。通常稳定性是指测量仪器的计量特性随时间不变化的能力。若稳定性不是对时间而言,而是对其他量而言,则应该明确说明。稳定性可以进行定量的表征,主要是确定计量特性随时间变化的关系。自动控制系统的种类很多,完成的.功能也千差万别,有的用来控制温度的变化,有的却要跟踪飞机的飞行轨迹。但是所有系统都有一个共同的特点才能够正常地工作,也就是要满足稳定性的要求。
二、仪器测量
标准电池,对其长期稳定性(电动势的年变化幅度)和短期稳定性(3~5天内电动势变化幅度)均有明确的要求;如量块尺寸的稳定性,以其规定的长度每年允许的最大变化量(微米/年)来进行考核,上述稳定性指标均是划分准确度等级的重要依据。
对于测量仪器,尤其是基准、测量标准或某些实物量具,稳定性是重要的计量性能之一,示值的稳定是保证量值准确的基础。测量仪器产生不稳定的因素很多,主要原因是元器件的老化、零部件的磨损、以及使用、贮存、维护工作不仔细等所致。测量仪器进行的周期检定或校准,就是对其稳定性的一种考核。稳定性也是科学合理地确定检定周期的重要依据之一。
三、判别
劳斯判据、赫尔维茨判据、李亚谱若夫三个定理。这些稳定性的判别方法分别适合于不同的数学模型,前两者主要是通过判断系统的特征值是否小于零来判定系统是否稳定,后者主要是通过考察系统能量是否衰减来判定稳定性。
当然系统的稳定性只是对系统的一个基本要求,一个令人满意的控制系统必须还要满足许多别的指标,例如过渡时间、超调量、稳态误差、调节时间等。一个好的系统往往是这些方面的综合考虑的结果。
一、稳定性定义
一项设备能否保持稳定之状态,即使受到外在之干扰,亦能回复到原来状态者,则该设备具有稳定之能力。
二、稳定性怎么判断
就是物质在受热情况下发生分解,所需的热量越多,热稳定性就越大,比较氢化物热稳定就是比较元素的非金属性就可以,非金属性越强,热稳定性越大。同周期中,氢化物的热稳定性从左到右是越来越稳定,在同主族中的氢化物的热稳定性则是从下到上越来越稳定,也就是非金属性越强的元素,其氢化物的热稳定性越稳定。
㈡ 鲁棒性和稳定性的区别是什么
具体区别如下:
所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持其它某些性能的特性。所谓“稳定性”,是指控制系统在使它偏离平衡状态的扰动作用消失后,返回原来平衡状态的能力。
稳定性是指系统受到瞬时扰动,扰动消失后系统回到原来状态的能力,而鲁棒性是指系统受到持续扰动能保持原来状态的能力。稳定性分为一致稳定和渐进稳定,就是说可以慢慢的稳定也可以螺旋形绕着稳定点稳定。
鲁棒性,是指你可以设定一个鲁棒界(可以2范数也可以是无穷范数),只要系统在这个界内就是稳定的;两者其实是包含关系。
鲁棒性能包括:信号跟踪、干扰抑制、响应性和最优性等动态性能,其中稳定性仅仅是其前提条件。通常控制系统在不稳定前其性能已经显着下降,因此鲁棒控制的最终目的是使系统满足所要求的鲁棒性能。
㈢ 设备稳定性指标是指什么
设备稳定性指标是指什么
设备稳定性指标是指什么,系统的四个性质即线性、时不变性、因果性和稳定性都很重要,那么,设备稳定性指标是指什么,下面就让我们一起来看一下吧,希望可以帮助到你。
设备稳定性可以理解为:程序从安装到加载启动运行直至结束完成的整个过程中尽可能的不出现异常、错误等问题,称之为设备稳定性指标。
如果提升设备稳定性:服务器领域有专用的服务器处理器,服务器处理器,可连续工作数年之久; 带校验的ecc内存, 尽可能减少崩溃的可能性,服务器级别硬盘,抱歉7*24小时连续工作。冗余电源,服务器系统 以及ups不间断供电,甚至需要专用的机房做防潮处理。
稳态性能指标
调速范围D和静差率s的统称。衡量调速系统稳定运行性能的两个指标不是彼此孤立的,必须同时考虑才有意义:一个调速系统的调速范围是指在最低速时还能满足所提静差率要求的转速可调范围;脱离了对静差率的要求,任何调速系统都可以得到极高的调速范围,反之,脱离调速范围,要满足给定的静差率也容易得多。
在评价一个系统的时候,性能指标是很重要的,那么在当前J2EE的系统开发当中,如何来提高系统的性能呢?我觉得应该从对象管理入手,从对象的生命周期开始。
虽然大家可能会说,Java有垃圾收集器,我们的对象的生命周期不需要我们自己管理,但是如果要是真的过分依赖java语言本身的特性,那么我相信,系统的性能肯定好不到哪去。所以,下面就主要从三个方面入手来说一下我的想法。
第一:容器化系统功能性组件
在每个系统中,我想都会存在功能性的组件,比如当前开发当中的service,这些功能性的服务一般来说都是没有状态的,是可以多用户共享的,这种共享的服务对象,我们也需要将其进行统一的管理,幸运的`是目前已经存在很多这样的管理功能性服务的框架或者容器,比如目前比较流行的各种IOC容器,或者是重量级的EJB容器,它们都提供了对系统中各种服务组件的管理。
第二:缓存化业务对象
在说缓存之前,我不得不说一下面向对象的设计,可能有些人认为,为什么缓存会与面向对象的设计扯上关系,其实这就是缓存的关键。首先设想一下,如果开发系统的过程中,都是采用面向过程,面向数据库的思维编程,每一次业务操作,我们都是调用通过数据库操作来完成,这其实就是POEAA中的事务脚本,只适合一些简单的系统的开发,或者一个项目中,比较简单模块的开发,对于复杂的模块,更好的方式就是采用面向对象的方法来进行开发。
好了,说到了面向对象的设计问题,至于这个问题已经有很多书籍以及很多人讨论了很多年了,就我个人来说,我觉得采用DDD建模是目前比较适合的一种方式。DDD中涉及到得每种模式或者说是每一种模型元素对于缓存设计来说都是很重要的,下面我说说我的想法:
首先我说一下关于聚合的问题,为什么说聚合对于缓存非常重要呢?这其实涉及到了一种控制访问的问题,一个聚合根控制了对整个聚合的访问,要想访问聚合里的对象必须要通过聚合的根。
好了,我们以一个实例来说话,比如一个论坛的设计,论坛中有Forum以及ForumState对象,Forum对象是聚合的根,是一个实体模型,而ForumState是一个值对象,并且是属于Forum这个聚合根的子对象,我们把ForumState对象从Forum对象分离出来,好处主要有两个。
从事务的角度来说,当我们更新ForumState对象的时候,不用锁住Forum对象,从缓存设计的角度来说,当我们更新ForumState对象的时候不用刷新Forum对象的缓存,因为Forum不是经常改变的,所以不必要因为经常改变属性的改变而改变。那么具体怎么来设计呢?
我们可以这样做,在ForumState对象中设置一个状态位,表示它的状态是否已经改变,当Forum状态发生改变,比如有人创建新的帖子或者回复了帖子后,我们可以设置这个状态位为true,表示状态已经改变,这样当再次从缓存中取得Forum时,查看状态位,如果发现已经变化了,那么就重新从数据库加载ForumState。
当然要想达到这种效果,我们一定要设计好聚合,所有对子对象的访问都要通过聚合的根,比如所有对ForumState对象的访问都要经过Forum对象,并且要保证所有的数据库操作,都首先从统一的缓冲入口进行,这样保证了整个系统中用的是同一个缓存,大家操作的所有对象都是同一个缓存中的对象。
所以这里也给出了一条对象设计的提示,将经常变化的熟悉和不经常变化的属性分开,并且将经常变化的属性独立出去,作为聚合根的 一个子对象,这样做到变和不变分离,不仅有利于高内聚,而且有利于事务的控制和缓存的更新。
1、为全系统正常运行、系统内设备故障指示以及及时排除故障等提供有力的保障。
2、SCR技术通过车载诊断系统(OBD),可以对汽车的排放进行实时*,及时地显示故障信息,以确保系统的正常运转。
3、热力学系统物态方程的确定在热力学技术中非常有意义,因为由物态方程可求出系统许多重要的热力学函数表达式,以及各种热力学过程中的功、热量。
4、介绍了推挽式激光导引无人车设计的主要技术指标,结构特点及各主要系统的功能与作用。
5、很多系统不能兼容,作为统一技术标准确定下来还需要多年的时间。
6、INTBank希望此员工能够排除故障,监视系统*能指标,最好还能够按照业务所表明的方式提取各种业务标准。
对于连续系统和离散系统的判断,教材中的叙述如下:如果连续系统H(s)的极点都在s平面的左半开平面,离散系统H(z)的极点均在z平面的单位圆内,则该系统是稳定的因果系统。
如果系统函数是已知的,那么根据上面的方法,先求出系统函数的极点,然后根据极点的位置,就可以判断系统的稳定性,于是,问题最后归结为求解一元多次方程的根,即解方程。
吴大正的教材举出一些简单的例子,说明如何判断系统的稳定性,以及当满足系统的稳定性时,一些系统参数应该满足什么条件。但是,当方程是高次的,比如3次、4次等,如果不能进行因式分解而求出方程的根,那么应该怎么办呢?
教材没有交代。另一本教材,也是我第一次自学这门课程时所采用的教材,即西电陈生潭等编着的《信号与系统》(第二版,西安电子科技大学出版社,2001年)则介绍了两个重要的准则,即罗斯-霍尔维茨(Routh-Hurwitz)准则和朱里(July)准则。
罗斯-霍尔维茨准则在传统的控制理论课程中都要讲授,它是判别代数方程根的实部特征的一种方法,可以不用解方程就知道方程包含多少个负实部的根。
由于计算机技术的发展,现在用计算机求解高次方程已经很成熟了,因而罗斯-霍尔维茨准则和朱里准则的重要性逐渐降低,很多教材已经不讲这两个准则了。但是,这两个准则曾在历史上有着不可磨灭的功绩,而且难度不大,易于掌握,同学们应该对这两个准则有所了解。
㈣ 怎样去判断数据的稳定性
数据稳定性是衡量数据波动性与离散性的指标,数据波动越小,离散程度越小,则稳定性越高。通常以属性评价值的熵作为数据稳定性的度量。
生产过程中数据稳定性的判断,主要有三种方法:最值差值法、统计学方法、百分数衡量法 。
最值差值法
最值差值法的判断思路是寻找某一固定时间段内出现的参数最大值和最小值,通过比较它们差值的绝对值与比较值的大小来判断其稳定性。
统计学方法
统计学方法则是借用数学上的统计指标,对参数数据进行方差或均方差等的比较,进而分析参数的稳定区间。
百分数衡量法
百分数衡量法则是通过分析参数最大值和最小值差值占参数均值的百分值来判断稳定性。
㈤ 可靠性一致性稳定性
可靠性一致性稳定性
可靠性一致性稳定性,稳定性是指“测量仪器保持其计量特性随时间恒定的能力。通常稳定性是指测量仪器的计量特性随时间不变化的能力。以下为大家分享可靠性一致性稳定性。
1、引言
随着移动通信的不断发展,移动通信天线也经历了从单极化天线、双极化天线到智能天线、MIMO天线乃至大规模阵列天线的发展历程。中国移动经过4G大发展后,目前拥有大约150万个基站,在网天馈质量参差不齐。天线作为移动通信网络的感知器官在网络中的地位越来越复杂,并且越来越重要。虽然天线的投资占比较小仅占基站投资的3%左右、,但是网络故障的40%以上是由天馈系统引起的。天馈系统质量下降会导致覆盖性能变差,或者造成干扰问题,而且天线作为一种复杂的无源产品,其在网络中很难监测,
天馈系统问题的表现多种多样,如:天线在网使用两三年后,网络覆盖性能明显下降,互调干扰越来越严重;下暴雨时驻波比告警;刮大风时驻波比告警;同一厂家同一型号的天线用在同一网络性能却大不相同等等。这些现象,表明供货厂家的产品可靠性不高,质量存在隐患,达不到产品寿命指标要求。如何判断呢? 这就和天线的一致性、稳定性和可靠性相关。
2、天线的可靠性
通常,产品的可靠性是指元件、产品、系统在一定时间内、在一定条件下无故障地执行指定功能的能力或可能性。可通过可靠度、失效率、平均无故障间隔等来评价产品的可靠性。环境可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。产品在设计、应用过程中,不断经受自身及外界气候环境及机械环境的影响,而仍需要能够正常工作,这就需要用试验设备对其进行验证。
可靠性包含了耐久性、可维修性、设计可靠性三大要素。耐久性是指产品使用无故障性或使用寿命的长短。可维修性是指当产品发生故障后,能够很快很容易的通过维护或维修排除故障。
设计可靠性是决定产品质量的关键,由于人—机系统的复杂性,以及人在操作中可能存在的差错和操作使用环境的这种因素影响,发生错误的可能性依然存在,所以设计的时候必须充分考虑产品的易使用性和易操作性,这就是设计可靠性。因此,可靠性是一项重要的质量指标,只是定性描述就显得不够,必须使之数量化,这样才能进行精确的描述和比较。可靠性的定量表示有其自己的特点,由于使用场合的不同,很难用一个特征量来完全代表。
天线产品的可靠性的检验可以通过一系列试验来判断,可靠性试验是对天线产品进行可靠性调查、分析和评价的重要手段。天线的可靠性试验包括高低温试验、淋雨试验、振动试验、冲击试验、碰撞试验、汽车运输试验、风载试验、摄冰试验和功率试验等。通过环境试验可以检验天线产品结构的可靠性。如图1所示,为淋雨试验、振动试验和大功率试验后,满足可靠性要求的天线与不满足的对比测试结果。
从图中可以看出,通过环境试验可以检验出可靠性较差的天线,环境试验可以对天线产品的设计、材料和工艺的可靠性进行检验。
3、天线性能的稳定性
产品的稳定性是指产品保持其特性随时间恒定的能力,通常是指产品的特性随时间不变化的能力。稳定性可以进行定量的表征,主要是确定特性随时间变化的关系。稳定性很重要,那么怎么才能知道系统是否稳定呢?
产品的稳定性和可靠性是不可分的,对于天线产品的稳定性如何判别呢,一种相对简单的方法就是通过可靠性试验前后指标曲线的重合度来判断天线性能的可靠性。通过研究发现:
1、辐射参数对工艺及电路不敏感,而电路参数对电路及工艺敏感,在生产过程,特别是多次调试易对电路参数造成影响;
2、电路参数中,互调量级太小,对测试方法、测试设备及环境敏感波动大,不适合统计评估;
3、电路参数对测试场地要求低,可现场测试。辐射参数对测试场地的反射和屏蔽特性要求很高,不可现场测试。
因此,建议选取电路参数中的驻波比和隔离度作为天线性能的稳定性表征参量。
如图2所示,为振动试验前后天线电压驻波比性能稳定性比较,左图的天线在振动试验前后驻波比基本没有变化曲线吻合很好,而右图的天线在振动试验后虽然驻波比仍然合格VSWR<1.5、,但试验前后驻波比曲线偏差较大,可以认为该天线稳定性较差。
图3为淋水试验前后的天线隔离度性能稳定性对比。可以看出左图的天线隔离度稳定性较好,右图较差。
天线稳定性的较差的`天线,虽然常常能够通过入网测试,但在使用周期内往往由于自然环境的变化引起质量下降,从而导致网络质量的下降,易出现引言中发生的现象。
4、天线性能的一致性
天线性能的一致性是指同一型号的天线产品的参数表现的吻合性,可以通过比较多个同类型产品的指标曲线的近似度来判断。如图4所示,为同一类型的多个天线电压驻波比曲线的一致性对比,左图的多个天线驻波比曲线趋势一致,偏差较小,表明该类型天线驻波比性能比较一致;右图的多个天线的驻波比曲线没有规律,比较杂乱,表明该类型天线的驻波比性能一致性较差。图5为天线隔离度性能的一致性比较,同样左图天线比右图天线隔离度参数的一致性要好。因此,可以认为,左图天线性能的一致性要好于右图的天线。
5、结论
天线属于宽带、低Q值无源产品,在可靠性试验过程中材料结构损坏后不会还原,高低温试验过程中材料的热胀冷缩引起的频率变化忽略不计,对比试验后的测试指标变化情况足以反映电性能指标的稳定性,不需在可靠性试验过程中测试指标。天线的互调指标,对制造工艺及结构稳定性敏感,可采取动态测试,间接验证产品稳定性。
总之,天线的可靠性、稳定性和一致性对移动通信网络具有重要的影响,在天线产品入网之前测量和把控天线的这些性能具有重要意义
稳定性是什么
稳定性是指“测量仪器保持其计量特性随时间恒定的能力。通常稳定性是指测量仪器的计量特性随时间不变化的能力。若稳定性不是对时间而言,而是对其他量而言,则应该明确说明。稳定性可以进行定量的表征,主要是确定计量特性随时间变化的关系。自动控制系统的种类很多,完成的功能也千差万别,有的用来控制温度的变化,有的却要跟踪飞机的飞行轨迹。但是所有系统都有一个共同的特点才能够正常地工作,也就是要满足稳定性的要求。
仪器测量
通常可以用以下两种方式:用计量特性变化某个规定的量所需经过的时间,或用计量特性经过规定的时间所发生的变化量来进行定量表示。例如:对于标准电池,对其长期稳定性(电动势的年变化幅度)和短期稳定性(3~5天内电动势变化幅度)均有明确的要求;如量块尺寸的稳定性,以其规定的长度每年允许的最大变化量(微米/年)来进行考核,上述稳定性指标均是划分准确度等级的重要依据。
对于测量仪器,尤其是基准、测量标准或某些实物量具,稳定性是重要的计量性能之一,示值的稳定是保证量值准确的基础。测量仪器产生不稳定的因素很多,主要原因是元器件的老化、零部件的磨损、以及使用、贮存、维护工作不仔细等所致。测量仪器进行的周期检定或校准,就是对其稳定性的一种考核。稳定性也是科学合理地确定检定周期的重要依据之一。 [1]
示例
什么叫稳定性呢?我们可以通过一个简单的例子来理解稳定性的概念。一个钢球分别放在不同的两个木块上,A图放在木块的顶部,B图放在木块的底部。如果对钢球施加一个力,使钢球离开原来的位置。A图的钢球就会向下滑落,不会再回到原来的位置。而B图的钢球由于地球引力的作用,会在木块的底部做来回的滚动运动,当时间足够长时,小球最终还是要回到原来的位置。我们说A图的情况就是不稳定的,而B图的情况就是稳定的。
上面给出的是一个简单的物理系统,通过它我们对于稳定性有了一个基本的认识。稳定性可以这样定义:当一个实际的系统处于一个平衡的状态时就相当于小球在木块上放置的状态一样、如果受到外来作用的影响时相当于上例中对小球施加的力、,系统经过一个过渡过程仍然能够回到原来的平衡状态,我们称这个系统就是稳定的,否则称系统不稳定。一个控制系统要想能够实现所要求的控制功能就必须是稳定的。在实际的应用系统中,由于系统中存在储能元件,并且每个元件都存在惯性。这样当给定系统的输入时,输出量一般会在期望的输出量之间摆动。此时系统会从外界吸收能量。对于稳定的系统振荡是减幅的,而对于不稳定的系统,振荡是增幅的振荡。前者会平衡于一个状态,后者却会不断增大直到系统被损坏。
判别
既然稳定性很重要,那么怎么才能知道系统是否稳定呢?控制学家们给我们提出了很多系统稳定与否的判定定理。这些定理都是基于系统的数学模型,根据数学模型的形式,经过一定的计算就能够得出稳定与否的结论,这些定理中比较有名的有:劳斯判据、赫尔维茨判据、李亚谱若夫三个定理。这些稳定性的判别方法分别适合于不同的数学模型,前两者主要是通过判断系统的特征值是否小于零来判定系统是否稳定,后者主要是通过考察系统能量是否衰减来判定稳定性。
当然系统的稳定性只是对系统的一个基本要求,一个令人满意的控制系统必须还要满足许多别的指标,例如过渡时间、超调量、稳态误差、调节时间等。一个好的系统往往是这些方面的综合考虑的结果。
什么是可靠性
元件、产品、系统在一定时间内、在一定条件下无故障地执行指定功能的能力或可能性。可通过可靠度、失效率、平均无故障间隔等来评价产品的可靠性。
简介
根据国家标准GB-6583的规定,环境可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。产品在设计、应用过程中,不断经受自身及外界气候环境及机械环境的影响,而仍需要能够正常工作,这就需要用试验设备对其进行验证,这个验证基本分为研发试验、试产试验、量产抽检三个部分。
一般所说的“可靠性”指的是“可信赖的”或“可信任的”。我们说一个人是可靠的,就是说这个人是说得到做得到的人,而一个不可靠的人是一个不一定能说得到做得到的人,是否能做到要取决于这个人的意志、才能和机会。同样,一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。
对产品而言,可靠性越高就越好。可靠性高的产品,可以长时间正常工作这正是所有消费者需要得到的、;从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。
简单的说,狭义的“可靠性”是产品在使用期间没有发生故障的性质。例如一次性注射器,在使用的时间内没有发生故障,就认为是可靠的;再如某些一旦发生故障就不能再次使用的产品,日光灯管就是这类型的产品,一般损坏了只能更换新的。
从广义上讲,“可靠性”是指使用者对产品的满意程度或对企业的信赖程度。而这种满意程度或信赖程度是从主观上来判定的。为了对产品可靠性做出具体和定量的判断,可将产品可靠性可以定义为在规定的条件下和规定的时间内,元器件产品、、设备或者系统稳定完成功能的程度或性质。例如,汽车在使用过程中,当某个零件发生了故障,经过修理后仍然能够继续驾驶。
产品实际使用的可靠性叫做工作可靠性。工作可靠性又可分为固有可靠性和使用可靠性。固有可靠性是产品设计制造者必须确立的可靠性,即按照可靠性规划,从原材料和零部件的选用,经过设计、制造、试验,直到产品出产的各个阶段所确立的可靠性。使用可靠性是指已生产的产品,经过包装、运输、储存、安装、使用、维修等因素影响的可靠性。
要素
可靠性包含了耐久性、可维修性、设计可靠性三大要素。
耐久性: 产品使用无故障性或使用寿命长就是耐久性。例如,当空间探测卫星发射后,人们希望它能无故障的长时间工作,否则,它的存在就没有太多的意义了,但从某一个角度来说,任何产品不可能100%的不会发生故障。
可维修性: 当产品发生故障后,能够很快很容易的通过维护或维修排除故障,就是可维修性。像自行车、电脑等都是容易维修的,而且维修成本也不高,很快的能够排除故障,这些都是事后维护或者维修。而像飞机、汽车都是价格很高而且非常注重安全可靠性的要求,这一般通过日常的维护和保养,来大大延长它的使用寿命,这是预防维修。产品的可维修性与产品的结构有很大的关系,即与设计可靠性有关。
设计可靠性: 这是决定产品质量的关键,由于人——机系统的复杂性,以及人在操作中可能存在的差错和操作使用环境的这种因素影响,发生错误的可能性依然存在,所以设计的时候必须充分考虑产品的易使用性和易操作性,这就是设计可靠性。一般来说,产品的越容易操作,发生人为失误或其他问题造成的故障和安全问题的可能性就越小;从另一个角度来说,如果发生了故障或者安全性问题,采取必要的措施和预防措施就非常重要。例如汽车发生了碰撞后,有气囊保护。
什么是一致性
Meta分析多用于回答单个研究不能回答的问题,原始研究常常纳入特定类型的患者和明确定义的干预措施,而选择上述特征不同的研究便可以评估效应的一致性。一致性对于结局效应指标的选取具有重要意义,一般情况下相对效应指标比绝对效应指标的一致性好。
测量
一致性的测量可以用于描述多个作者评价的一致程度,可使用Kappa统计量计算两个作者在作简单的纳入/排除决策时的测量一致性,见表1。对于用Kappa值判断一致性的建议参考标准为:①Kappa =+1,说明两次判断的结果完全一致;②Kappa =-1,说明两次判断的结果完全不一致;③Kappa =0,说明两次判断的结果是机遇造成;④Kappa<0,说明一致程度比机遇造成的还差,两次检查结果很不一致,但在实际应用中无意义;⑤kappa>0,此时说明有意义,Kappa愈大,说明一致性愈好;⑥Kappa<0.4,说明一致程度不够理想;⑦Kappa≥0.75,说明已经取得相当满意的一致程度 [1] 。
但不建议将Kappa统计量作为系统评价的标准,即使其在预实验的早期阶段可以揭示问题,但不能揭示有关评价分歧的实质影响。例如,评估一个实施良好的大规模研究合格性时的分歧比一个小型有偏倚风险的研究的分歧对系统评价的影响更大 [2] 。
当Meta分析结果显示个体研究结果的可信区间重叠较少时,通常表明存在统计学异质性,此时需要对异质性进行统计学检验,对研究间的不一致性进行量化。
网状Meta分析中的一致性
网状Meta分析中的一致性是指直接于间接比较结果的相似度,可分为方向或大小一致性,主要依据大小的一致性进行鉴定,如Bucher法等。一致性的鉴别可分为客观与主观鉴别法,主要包括:基本特征比较、治疗效应修饰符——协变量、参照措施比较、节点分析、不一致性模型、假设检验、回测法、多维测量法、两步法、图形理论法、析因方差分析法等。网状 Meta 分析制作者在制作网状 Meta 分析时可考虑选择一种或两种方法来鉴别及处理一致性。