导航:首页 > 数据处理 > 数据挖掘通常与什么有关系

数据挖掘通常与什么有关系

发布时间:2023-02-13 21:29:25

A. 什么是数据挖掘数据挖掘与传统分析方法有什么区别

数据挖掘(英语:Datamining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discoveryin Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识.数据挖掘所得到的信息应具 有先未知,有效和可实用三个特征.

更多数据挖掘的信息,推荐咨询CDA数据分析师的课程。CDA数据分析师的课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。 点击预约免费试听课。

B. 什么是数据挖掘

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘流程:

C. 数据挖掘的相关学科有哪些

数据挖掘涉及的学科:统计学、数据库系统、数据仓库、信息检索、机器学习、应用、模式识别、可视化、算法、高性能计算、数理统计、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像与信号处理、空间数据分析等。

数据挖掘是一个比较传统的研究方向,是从大量的、随机的、不完全的、有噪声的、模糊的数据中,提取隐含在其中、人们事先不知道又潜在有用信息和知识的过程。数据挖掘需要根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、规则推理、决策树、模糊集、甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期的目标,都需要回到前面的步骤,重新调整并执行。数据挖掘需要综合运用计算机、数学以及统计学的相关知识。在大数据时代,数据挖掘被赋予了更丰富的含义,研究范围也有了相应的拓展。

想更多了解数据挖掘相关的学科,推荐上CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。真正理解商业思维,项目思维,能够遇到问题解决问题。点击预约免费试听课。

D. 什么是数据挖掘数据挖掘怎么做啊

数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:

(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。

(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。

(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。

E. 数据挖掘的应用领域有哪些

数据挖掘的应用非常广泛,只要该产业有分析价值与需求的数据库,皆可利用数据挖掘工具进行有目的的发掘分析。常见的应用案例多发生在零售业、制造业、财务金融保险、通讯及医疗服务:
(1)商场从顾客购买商品中发现一定的关联规则,提供打折、购物券等促销手段,提高销售额;
(2)保险公司通过数据挖掘建立预测模型,辨别出可能的欺诈行为,避免道德风险,减少成本,提高利润;
(3)在制造业中,半导体的生产和测试中都产生大量的数据,就必须对这些数据进行分析,找出存在的问题,提高质量;
(4)电子商务的作用越来越大,可以用数据挖掘对网站进行分析,识别用户的行为模式,保留客户,提供个性化服务,优化网站设计;
一些公司运用数据挖掘的成功案例,显示了数据挖掘的强大生命力:
美国AutoTrader是世界上最大的汽车销售站点,每天都会有大量的用户对网站上的信息点击,寻求信息,其运用了SAS软件进行数据挖掘,每天对数据进行分析,找出用户的访问模式,对产品的喜欢程度进行判断,并设特定服务,取得了成功。
Reuteres是世界着名的金融信息服务公司,其利用的数据大都是外部的数据,这样数据的质量就是公司生存的关键所在,必须从数据中检测出错误的成分。Reuteres用SPSS的数据挖掘工具SPSS/Clementine,建立数据挖掘模型,极大地提高了错误的检测,保证了信息的正确和权威性。
Bass Export是世界最大的啤酒进出口商之一,在海外80多个市场从事交易,每个星期传送23000份定单,这就需要了解每个客户的习惯,如品牌的喜好等,Bass Export用IBM的Intelligent Miner很好的解决了上述问题。

F. 什么是数据挖掘,简述其作用和应用。

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统和模式识别等诸多方法来实现上述目标。

人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据,正是在这样的条件下,数据挖掘技术应运而生。

数据挖掘有很多合法的用途,例如可以在患者群的数据库中查出某药物和其副作用的关系。这种关系可能在1000人中也不会出现一例,但药物学相关的项目就可以运用此方法减少对药物有不良反应的病人数量,还有可能挽救生命。

(6)数据挖掘通常与什么有关系扩展阅读

目前数据挖掘的算法主要包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。

根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及internet等。

数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步。

阅读全文

与数据挖掘通常与什么有关系相关的资料

热点内容
作为产品经理如何写app的逻辑 浏览:123
小米换机怎么选择第三方应用程序 浏览:248
酒店代理怎么推广 浏览:855
如何跟踪小程序交互代码 浏览:240
我想买个小程序在哪里找 浏览:612
日照运营商大数据多少钱一条 浏览:80
电子表格如何设置数据下拉排序 浏览:610
春雪食品有什么产品 浏览:229
车险怎么代理保险 浏览:623
怎么看狗币交易了多少 浏览:246
微信上小程序怎么绑定手机号 浏览:193
为什么数据网络延迟一直100 浏览:989
喜云怎么添加自己的产品 浏览:368
车易升obd怎么看数据 浏览:483
WEB应用程序设计专业学什么 浏览:177
旅游卡代理费用多少 浏览:191
网上怎么代理五谷磨房 浏览:534
杭州职业技术学院附近哪里住宿好 浏览:648
地平线3怎么终结连续技术 浏览:705
如何免费试用电子产品 浏览:996