‘壹’ 大数据的来源有哪三个
品牌型号:华为MateBook D15
大数据的来源有交易数据、人为数据、机器和传感器数据。
交易数据包括POS机数据、信用卡刷卡数据等;人为数据,包括电子邮件、文档、图片以及通过微信、博客、推特等产生的数据流;机器和传感器数据,如感应器、量表和其它设施的数据。
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
‘贰’ 大数据的三大主要来源
1、开源数据
开源数据包括了互联网数据、移动数据网数据,互联网平台和移动互联网平台通过采、编、发或者通过用户互动产生的数据,公之于众,供网民或用户访问、浏览。
2、业务数据
业务数据产生于各单位的信息化系统中,尤其是内部的信息化系统,我们统称为业务系统。在目前的单位业务系统中,存在于单位的OA系统或者CRM之中,其中蕴含了大量的工作数据和交易数据,以及客户管理数据,包括交易数据、流水数据、记帐数据、借款数据、贷款数据等业务数据,这些数据构建了每天的系统日志,同时又是帐户余额、信用额度、购买能力等的有力补充,这些数据不仅对生产系统起到计费支撑作用,同时也是用户(银行客户、电力客户、担保公司等)进行相关决策的重要基础,所以目前很多单位需要对这些数据进行查询统计和分析。
3、线路数据
无论是互联网还是各种内网,任何的网络行为都需要经过“线路”进行链接和交互,而在这条线路上,要经过无数的路由交换得以完成,这条线路在完成链接的同时,也记录与存贮了大量的数据,我们统称为线路数据。
‘叁’ 如何对大数据来源分类
从大数据的来源来看。
主要分为以下几个大类:
一、国家数据库。
二、企业数据。
三、机器设备数据。
四、个人数据。
方法/步骤
一、国家数据库
包含公开的和保密的两个方面。
公开的如GDP、CPI、固定资产投资等宏观经济数据,包括历年统计年鉴或人口普查的数据,以及地理信息数据、金融数据、房地产数据、医疗统计数据等等。
‘肆’ 大数据来源有哪些
大数据平台数据的来源主要来自数据库、日志、前端埋点、爬虫。
‘伍’ 大数据主要来源于什么
来源:从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
(5)举例大数据来源和类型有哪些扩展阅读:
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
‘陆’ 大数据的主要数据来源包括
大数据的来源包括交易数据、人工数据、机器和传感器数据。 交易数据包括POS机数据、信用卡数据等。人为数据,包括通过微信、博客、推文等产生的邮件、文档、图片、数据流等。;以及机器传感器数据,例如传感器、仪表和其他设施。 大数据,或称巨量数据,是指庞大到无法通过主流软件工具在合理的时间内检索、管理、处理和排序的信息,以帮助企业做出更主动的商业决策。大数据需要特殊的技术来有效处理大量可以容忍时间流逝的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展存储系统。
‘柒’ 数据采集|教育大数据的来源、分类及结构模型
一、 教育大数据的来源
教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。
教育大数据产生于 各种教育实践活动 ,既包括校园环境下的教学活动、管理活动、科研活动以及校园生活,也包括家庭、社区、博物馆、图书馆等非正式环境下的学习活动;既包括线上的教育教学活动,也包括线下的教育教学活动。
教育大数据的核心数据源头是“人”和“物”——“人”包括学生、教师、管理者和家长,“物”包括信息系统校园网站、服务器、多媒体设备等各种教育装备。
依据来源和范围的不同,可以将教育大数据分为个体教育大数据、课程教育大数据、班级教育大数据、学校教育大数据、区域教育大数据、国家教育大数据等六种 。
二、 教育大数据的分类
教育数据有多重分类方式。
从数据产生的业务来源来看,包括 教学类数据、管理类数据、科研类数据 以及服务类数据。
从数据产生的技术场景来看,包括 感知数据 、业务数据和互联网数据等类型。
从数据结构化程度来看,包括 结构化数据、半结构化数据和非结构化数据 。结构化数据适合用二维表存储。
从数据产生的环节来看,包括 过程性数据和结果性数据 。过程性数据是活动过程中采集到的、难以量化的数据(如课堂互动、在线作业、网络搜索等);结果性数据则常表现为某种可量化的结果(如成绩、等级、数量等)。
国家采集的数据主要以管理类、结构化和结果性的数据为主,重点关注宏观层面教育发展整体状况。到大数据时代,教育数据的全面采集和深度挖掘分析变得越来越重要。教育数据采集的重心将向非结构化、过程性的数据转变。
三、教育数据的结构模型
整体来说,教育大数据可以分为四层,由内到外分别是基础层、状态层、资源层和行为层。
基础层:也就是我们国家最最基础的数据,是高度保密的数据; 包括教育部2012年发布的七个教育管理信息系列标准中提到的所有数据,如学校管理信息、行政管理信息和教育统计信息等;
状态层,各种装备、环境与业务的运行状态的数据; 必然设备的耗能、故障、运行时间、校园空气质量、教室光照和教学进度等;
资源层,最上层是关于教育领域的用户行为数据。 比如PPT课件、微课、教学视频、图片、游戏、教学软件、帖子、问题和试题试卷等;
行为层:存储扩大教育相关用户(教师、学生、教研员和教育管理者等)的行为数据, 比如学生的学习行为数据、教师的教学行为数据、教研员的教学指导行为数据以及管理员的系统维护行为数据等。
不同层次的数据应该有不同的采集方式和教育数据应用的场景。
关于教育大数据的冰山模型,目前我们更多的是采集一些显性化的、结构性的数据,而存在冰山之下的是更多的非结构化的,而且真正为教育产生最大价值的数据是在冰山之下的。
参考文献:
教育大数据的来源与采集技术 邢蓓蓓
‘捌’ 大数据来源的几种类型
1.数据收集:在大数据的生命周期中,数据收集处于第一阶段。根据MapRece数据应用系统...
2.数据访问:大数据通过不同的技术路线存储和保存,大致可分为三类。第一类主要处理大规模结构化...
3.基础设施:云存储、分布式文件存储等。
4.数据处理:不同的数据集可能有不同的结构和模式,如文件、XML树、关系表等。这显示了数据的异质性。多个异构数据集需要进一步集成或...
5.统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关...
‘玖’ 如何对大数据的来源进行分类简答题
大数据来源主要分为:国家数据库、企业数据、机器设备数据和个人数据。
‘拾’ 大数据包括哪些
大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大数据技术包括数据采集,数据管理,数据分析,数据可视化,数据安全等内容。数据的采集包括传感器采集,系统日志采集以及网络爬虫等。数据管理包括传统的数据库技术,nosql技术,以及对于针对大规模数据的大数据平台,例如hadoop,spark,storm等。数据分析的核心是机器学习,当然也包括深度学习和强化学习,以及自然语言处理,图与网络分析等。