A. 建立数据思维的方法有哪些
一、数据趋势分析趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比、同比大家都比较了解,定基比就是和某个基点进行比较,比如2019年1月作为基点,定基比则为2010年2月和2019年1月进行比较。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
在数据分析的过程中,有很多因素影响到指标,那么我们可以不同维度来逐一考察,比如:渠道,产品版本,来源,关键词,网络,地域,IP,系统浏览器及版本等。
二、数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。对比分析,就是给孤立的数据一个合理的参考系,因为,孤立的数据毫无意义。
以A/B测试为例,最关键的是A/B两组只保持单一变量,其他条件保持一致。比如:测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
三、 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时:不同时间段数据是否有变化。
分渠道:不同来源的流量或者产品是否有变化。
分用户:新注册用户和老用户相比是否有差异,忠诚用户和小白用户相比是否有差异。
分地区:不同地区的数据是否有变化。
构成拆分:比如搜索由搜索词组成,可以拆分不同搜索词
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
B. CRM数据分析的思维方式有哪些
在CRM数据分析中,三种核心数据分析思维是框架型的指引,实际应用中还是需要很多技巧工具的。7种数据分析的思维方式,它们分别是象限法,多维法,假设法,指数法,二八法,对比法,漏斗法。如:象限法。通过对两种维度的划分,运用坐标的方式表达出想要的价值,由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,广泛应用于战略分析,产品分析,市场分析,客户管理,用户管理,商品管理等。多维法。多维法是指对分析对象从多个维度去分析,这里一般是三个维度,每个维度有不同数据分类,这样代表总数据的大正方体就被分割成一个个小方块,落在同一个小方块的数据拥有同样的属性,这样可以通过对比小方块内的数据进行分析。
C. 数据分析惯用的四种思维方式
一、对比思维
对比法就是用两组或两组以上的数据进行比较,是最通用的方法。我们知道孤立的数据没有意义,有对比才有差异。一些直接描述事物的变量,如长度、数量、高度、宽度等,通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。比如:用于在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。
二、象限思维
通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常于产品分析、市场分析、客户管理、商品管理等。比如:下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。
三、二八法/帕累托分析思维
二八法也可以叫帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。
往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业;找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。
四、漏斗思维
漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。
关于数据分析惯用的5种思维方式的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
D. 如何进行数据分析思维的训练
思维能力的训练是一种有目的、有计划、有系统的教育活动。对它的作用不可轻估。人的天性对思维能力具有影响力,但后天的教育与训练对思维能力的影响更大、更深。许多研究成果表明,后天环境能在很大程度上造就一个新人。思维能力的训练主要目的是改善思维品质,提高学生的思维能力,只要能实际训练中把握住思维品质,进行有的放矢的努力,就能顺利地卓有成效地坚持下去。思维并非神秘之物,尽管看不见,摸不着,来无影,去无踪,但它却是实实在在,有特点、有品质的普遍心理现象。(1)推陈出新训练法当看到、听到或者接触到一件事情、一种事物时,应当尽可能赋予它们的新的性质,摆脱旧有方法束缚,运用新观点、新方法、新结论,反映出独创性,按照这个思路对学生进行思维方法训练,往往能收到推陈出新的结果。(2)聚合抽象训练法把所有感知到的对象依据一定的标准“聚合”起来,显示出它们的共性和本质,这能增强学生的创造性思维活动。这个训练方法首先要对感知材料形成总体轮廓认识,从感觉上发现十分突出的特点;其次要从感觉到共性问题中肢解分析,形成若干分析群,进而抽象出本质特征;再次,要对抽象出来的事物本质进行概括性描述,最后形成具有指导意义的理性成果。(3)循序渐进训练法这个训练法对学生的思维很有裨益,能增强领导者的分析思维能力和预见能力,能够保证领导者事先对某个设想进行严密的思考,在思维上借助于逻辑推理的形式,把结果推导出来。(4)生疑提问训练法此训练法是对事物或过去一直被人认为是正确的东西或某种固定的思考模式敢于并且善于或提出新观点和新建议,并能运用各种证据,证明新结论的正确性。这也标志着一个学生创新能力的高低。训练方法是:首先,每当观察到一件事物或现象时,无论是初次还是多次接触,都要问“为什么”,并且养成习惯;其次,每当遇到工作中的问题时,尽可能地寻求自身运动的规律性,或从不同角度、不同方向变换观察同一问题,以免被知觉假象所迷惑。(5)集思广益训练法此训练法是一个组织起来的团体中,借助思维大家彼此交流,集中众多人的集体智慧,广泛吸收有益意见,从而达到思维能力的提高。此法有利于研究成果的形成,还具有潜在的培养学生的研究能力的作用。因为,当一些富个性的学生聚集在一起,由于各人的起点、观察问题角度不同,研究方式、分析问题的水平的不同,产生种种不同观点和解决问题的法。通过比较、对照、切磋,这之间就会有意无意地学习到对方思考问题的方法,从而使自己的思维能力得到潜移默化的改进。希望能帮到你
E. 数据分析都要学习哪些内容
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
4、业务理解
业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。
5、逻辑思维
这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。
6、数据可视化
数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。
F. 怎么培养数据分析的能力
2、工具实践
(1)对于入门小白,建议从Excel工具入手,这里以Excel为例:
学习Excel是一个循序渐进的过程:
基础的:简单的表格数据处理、打印、查询、筛选、排序
函数和公式:常用函数、高级数据计算、数组公式、多维引用、function
可视化图表:图形图示展示、高级图表、图表插件
数据透视表、VBA程序开发......
多逛逛excelhome论坛,平常多思考如何用excel来解决问题,学习用各种插件,对能够熟练使用Excel都有帮助。
其中,函数和数据透视表是两个重点。
函数
制作数据模板必须掌握的excel函数:
日期函数:day,month,year,date,today,weekday,weeknum 日期函数是做分析模板的必备,可以用日期函数来控制数据的展示,查询指定时间段的数据。
数学函数:proct,rand,randbetween,round,sum,sumif,sumifs,sumproct
统计函数:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 统计函数在数据分析中具有举足轻重的作用,求平均值,最大值,中位数,众位数都用得到。
查找和引用函数:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 这几个函数的作用不用多说,特别是vlookup,不会这个函数基本上复杂报表寸步难行。
文本函数:find,search,text,value,concatenate,left,right,mid,len 这几个函数多半用在数据整理阶段使用。
逻辑函数:and,or,false,true,if,iferror
(以上学会,基本能秒杀90%的办公室白领!)
数据透视表
数据透视表的作用是把大量数据生成可交互的报表,它具有这样一些重要功能:分类汇总、取平均、最大最小值、自动排序、自动筛选、自动分组;可分析占比、同比、环比、定比、自定义公式等
现实中,取数或报表+EXCEL+PPT似乎还是主流形式。
工具上,无论是业务人员还是分析人员,都可以通过自动取数工具或者BI工具来制作报表,减少重复操作的时间。
其次,增加与业务人员的沟通,充分了解业务需求,当你的业务水平和他们差不多甚至更高时,自然而然知道他们一言两语背后真实的需求是什么了。
最后,站在更高角度上,报表的基本粒度就是指标,可梳理出企业的基本指标体系,从经营分析的角度去做报表,把报表的工作标准化,降低报表的冗余,避免动不动就做一张报表。标准化包括指标分类,指标命名,业务口径,技术口径,实现方式等等。其实,最终目的是实现报表数据一致性,减少重复报表开发,降低系统开销的战略性举措。
在业余时间,可以多补充数理统计知识,学习R、Python语言,学习常用的挖掘模型,往高级分析师路上发展!
一起加油鸭!
以上,就是今天的分享,数据分析能力听起来很大很抽象,虽是软实力但却是行业的硬要求!量变引起质变,一步步来,才能做到触类旁通,做起项目才会越来越顺手。
G. 数据分析有哪些相关的培训课程
据分析师的课程包括两个层面的内容,只有把数据分析师的这些课程都学会并且运用,你就可以成为一名顶级的大数据分析师。
一、课程层面
第一级别:数据分析课程内容主要是从理论-实操-案例应用步步进阶,能让学员充分掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。
第二级别:在第一级别的基础上,第二级别包括建模分析师与大数据分析师,即为企业决策提供及时有效、易实现、可信赖的数据支持。建模分析师,指在ZF、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。本课程针对数据挖掘整套流程,以金融、电信、电商和零售业为案例背景深入讲授数据挖掘的主要算法。并将SAS Enterprise Miner、SPSS Moderler、SAS编程和SQL进行有效的结合,让学员胜任全方位的数据挖掘运用场景。大数据分析师,本课程以大数据分析为目标,从数据分析基础、JAVA语言入门和linux操作系统入门知识学起,系统介绍Hadoop、HDFS、MapRece和Hbase等理论知识和hadoop的生态环境,详细演示hadoop三种模式的安装配置,以案例的形式,重点讲解基于mahout项目的大数据分析之聚类、分类以及主题推荐。通过演示实际的大数据分析案例,使学员能在较短的时间内理解大数据分析的真实价值,掌握如何使用hadoop架构应用于大数据分析过程,使学员能有一个快速提升成为兼有理论和实战的大数据分析师,从而更好地适应当前互联网经济背景下对大数据分析师需求的旺盛的就业形势。
二、数据分析师的知识结构
H. 如何培养数据分析思维
1、多读书、多总结
读书要带着目的性去读书,比如若想训练逻辑思维,可以系统多看一些大牛的着作,特别是案例,看看别人是怎么思考,而你自己的想法是什么?从中对比为什么那些人会这个角度去思考,而我们认识不到呢?
读书是一个过程,不可能一蹴而就,学会思考找差异是重点,久而久之,便能多角度深层次去考虑问题!
2、多研究数据,举一反三
其实数据分析师经常面临跨领域,多种学科知识交错。作为企业数据分析师,从公司业务、财务状况、运营活动等等都要熟悉,因此,多研究数据、多研究其他公司的财报,分析其运营情况、公司发展模式和产品线等,另外分析其产品设计、体验,对比相同类型公司差异性在哪,孰优孰劣等,站在大局整体上去分析才能写出一份完整的多层次的数据报告。
总之,作为数据分析师,我们要学会举一反三的能力,透过一个点想到一个面,比如滴滴打车模式,是否适合我们呢?它的运作模式是怎样、盈利点在哪?透过这些去研究整个企业,然后自己结合业务是否可以借鉴呢?即使没有值得借鉴,即使错误,我们也都可以很好感知。
3、多追趋势,多联想
数据分析师虽不是运营或决策者,但数据分析师所做的工作往往会成为公司运营、决策的指南针。因此,数据分析师要有一根敏感的思维神经,不能“闭门造车”,而是需要时常关注经济、社会新闻动向,比如北京下大雨,云贵干旱,这是我们应该可以想到南北方需要的东西有什么不同,产品该怎么去推荐?当地人又需要什么样的服务呢?生活处处是学问啊!我们保持一颗追潮流之心。
数据分析师,入门并不难,现在很多学生或是转行希望从事数据工作,但数据工作并不是做做EXCEL表格,处理简单相加相减而已,更重要的是形成一个大局系统的思维,从中又缺乏细心敏感的心,才能把工作做好,而且也会提升自己的生活质量,办事能力。
I. 教你如何建立数据分析思维
在数据分析中,建立一个数据分析思维是一个至关重要的事情,但是建立一个数据分析思维不是一个简单的事情,需要不断的学习,不断的实践才能够验证这种思维是不是一个合适的数据分析思维,下面就给大家介绍一种经过实践过了的数据分析思维,希望能够给大家带来帮助。
如何建立数据分析思维呢?首先需要建立一个好的指标体系。了解和使用指标是数据分析思维的第一步,大家在建立数据分析的指标体系的时候应该能够意识到孤立的指标发挥不出数据的价值。和分析思维一样,指标也能结构化,也应该用结构化。上面提到的知识都是需要不同行业经验和业务知识去学习掌握,同时还要总结通用的技巧和注意事项。
建立一个好的指标体系之后,还需要明确指标的好坏,那么什么是好指标呢?什么是坏指标呢?行业人士说好指标应该是核心驱动指标。核心指标不只是写在周报的数字,而是整个运营团队、产品团队乃至研发团队都统一努力的目标。当然核心驱动指标和公司发展存在某种联系,是公司在一个阶段内的重点方向。记住是一个阶段,不同时期的核心驱动指标不一样。不同业务的核心驱动指标也不一样。
上述说的是好指标,那么坏指标有哪些呢?坏指标就是虚荣指标,它没有任何的实际意义。虚荣指标是没有意义的指标,往往看起来不错,其实并没有实际的意义。坏指标也是后验性指标,它往往只能反应已经发生的事情。坏指标同样也是复杂性指标,它能够将数据分析拖进一堆指标的陷阱中。
其次就是建立正确的指标结构。建立正确的指标结构和分析思维的金字塔结构一样,指标也有固有结构,呈现树状。指标结构的构建核心是以业务流程为思路,以结构为导向。从流程的角度搭建指标框架,可以全面的收集用户相关数据,这样可以毫无遗漏的保留出相关的数据。
以上的内容就是教给大家如何去建立自己的数据分析思维的方式了,大家在进行建立数据分析思维的时候一定要参考上面提到的步骤,首先就是建立一个好的指标体系,其次就是明确指标的好坏,最后就是建立正确的指标结构,希望这篇文章能够给大家带来帮助。
J. 数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。