导航:首页 > 数据处理 > 数据分析如何评估

数据分析如何评估

发布时间:2023-02-03 22:45:24

① 案例分享:如何通过数据分析进行活动效果评估

作者介绍

@郝笑笑 微信号:hao-xiao-xiao。

目前在互联网公司担任数据分析师,并负责DAU流量的增长策略与数据监控。

希望可以和各位一起交流学习。

1    导语

相信对于很多刚入门的分析师小白来说,评估活动效果、洞察业务机会,是所有工作中最可以体现价值感的事情,但也可能是令我们最头疼的事情。本文作者基于自身的实际工作经历,结合一个真实的运营活动,对活动评估中可以复用的数据分析“套路”进行总结和整理,希望能够给初接触数据分析的同学带来帮助。

一般来说,互联网公司的运营活动按照目的可以分为3种:拉新、促活、品牌宣传,尽管每种活动关注的核心绩效指标完全不同,但是分析的思路还是可以套路化的。接下来,本文将以某次促活活动为案例,分享下如何对一场活动的效果进行量化评估。

2    活动背景

伴随着移动互联网用户的增速越来越趋于饱和,用户增长的破局方法不得不从拉新获客转换为如何促活存量用户。

通过第三方广告媒体app(比如微信、抖音等)投放针对老用户的素材对用户促活,已经成为很多公司用来提升存量老用户活跃度的有效方法(后续会统称为“渠道拉活”)

某公司的市场投放部门也开始投入预算试水“渠道拉活”这一项目,在项目启动一段时间后,已经回收累积了大量的用户数据,但是:

渠道拉活对于DAU的带动贡献究竟有多大?

是否值得持续投入更多的资源?

活动情况的ROI如何?是否符合预期?

活动是否存在改进空间?

这些领导和业务方非常关注的问题,需要分析师基于数据给出公正和客观的答复。

3    分析框架和指标体系

3.1 分析框架

活动整体增量效果评估 (包括短期效果分析、长期效果分析)

ROI 核算(计算单用户的拉新或者促活成本)

参活用户质量评估

活动存在问题分析

3.2指标体系

3.21  流量规模

数据指标:

DAU

参与活动的用户数(举例:渠道拉活成功召回的用户数)

通过活动首次调起app的uv(举例:通过渠道拉活首次调起app的uv)

通过活动首次调起app的uv占day的比例(举例:通过渠道拉活首次调起uv的dau占比)

可解决的问题:

通过对比事先制定好的活动KPI指标,评估目标完成率;

与其他活动对比,评估促活的核心指标(通常是DAU)是否达到预期;

评估渠道拉活能够召回的用户量级有多大;

评估对DAU的净增量贡献有多大;

3.22用户质量、用户画像

数据指标:

留存率(次日回访率、7日回访率、30日回访率)

日均使用时长

核心功能渗透率

核心功能人均PV

人群画像(性别、城市、消费能力)

可解决的问题:

评估渠道召回用户的质量

监测是否存在刷量作弊渠道

3.23用户行为

数据指标:

站外转化漏斗(举例:广告曝光-广告点击-成功调起app-deeplink抵达特定页面)

站内核心行为的转化漏斗(举例:活动页-列表页-详情页)

可解决的问题:

评估用户从站外渠道到抵达App的路径是否顺畅,发现产品bug或者可以改善的机会点

评估活动的站内承接策略是否合理

4    分析过程

4.1活动效果评估以及活动ROI分析

在量化DAU (或者活跃天数) 贡献时,需要减去用户的自然活跃量,即计算“净增量”贡献。该贡献可以分为当日贡献和长期贡献。

当日贡献是指:当日的召回用户对于当日DAU的增量贡献

长期贡献是指:由于召回用户的后续回流,在后续特定时间范围还会持续贡献的用户天数增量。比如,活动后的50个参与用户,在后续30天内人均活跃天数比活动前提高10天,那么促活的增量贡献就是1500天。

不得不承认,AB实验最擅长处理归因和量化的问题。它的思想是,将流量随机分为数量均匀和特征均匀的两组(即对照组和实验组),实验组用户只有在产品策略上与对照组不同,因此我们可以认为两组用户在同一时间维度上的指标差异,可以完全归因于策略上的差异。

然而,该广告拉活项目无法设计对应的AB实验,但我们可以基于AB测试的思想,构造与实验组“相似”的用户群体作为对照组。具体过程如下:

将拉活渠道唤起app的用户作为实验组,未曾被拉活召回的存量用户作为对照组;

选取可能影响用户未来活跃度的特征(比如机型、新增渠道、历史活跃度、…),基于“特征相同”的原则,对两组用户划分为 N 对实验组和对照组。注意尽量将特征通过区间离散化,避免划分出的某一组落入的样本数过少,导致两组样本的指标差异不可信,比如特征“新增日期间隔”可以离散化为:7天内、8-14天、14天以上;

计算 N 对实验组和对照组的每一组的指标差异值,以及实验组的总指标差异(等于每一组指标差异*人群占比的相乘结果求和)

通过以上方法,可以计算出拉活对于当日DAU的贡献、以及拉活对于未来30天DAU的总增量贡献。

实际上,对于拉活对DAU的单次短期贡献,有更为简便的方法,即基于“首次归因”的思想,通过“拉活首次调起app的uv”进行量化评估,即如果用户多次启动过app,那么只有当通过促活广告首次调起app了,才会计入到促活广告的功劳。

值得一提的是,“首次归因”的方法也可以应用至“产品新上线功能评估”的效果量化中,通常我们可以将“启动app后首次访问该功能的用户量”作为该功能对dau的贡献量。

对于活动成本的核算,我们可以通过 “总成本消耗量 / 总DAU增量”,计算每个DAU增量的成本,以评估ROI是否符合预期。

4.2用户行为分析、和用户质量评估

可以以“大盘未参活用户”、“同期同类活动”、“往期同类活动”分别作为对比基准,基于用户行为漏斗、留存率、核心行为pv、人均使用时长等指标,识别本次促活策略是否有薅羊毛或者作弊严重的渠道,并评估活动拉来的用户质量好坏。但这里不作为本次分享重点,因此不再展开赘述。

5    结语

作为数据分析师,实际工作中遇到的促活策略往往是五花八门,但是活动效果好坏的评估过程依然是有章可循的。最后,简单总结下本文对于后续活动评估的可复用之处:

如何构建活动评估的指标体系;

如何量化归因活动的短期贡献(即“首次归因”法);   

如何在无法开展AB测试的情况下,通过构造对照组的方式,快速地量化评估长期的增量贡献;

1、回“数据产品”,获取<大厂数据产品面试题>

2、回“数据中台”,获取<大厂数据中台资料>

3、回“商业分析”,获取<大厂商业分析面试题>;

4、回“交个朋友”,进交流群,认识更多的数据小伙伴。

② 数据分析的方法有哪些

数据分析是指通过统计分析方法对收集到的数据进行分析,将数据加以汇总、理解并消化,通过数据分析可以帮助人们作出判断,根据分析结果采取恰当的对策,常用的数据分析方法如下:

将收集到的数据通过加工、整理和分析的过程,使其转化为信息,通常来说,数据分析常用的方法有列表法和作图法,所谓列表法,就是将数据按一定规律用列表方式表达出来,是记录和处理数据最常用的一种方法;

表格设计应清楚表明对应关系,简洁明了,有利于发现要相关量之间的关系,并且在标题栏中还要注明各个量的名称、符号、数量级和单位等;

而作图法则能够醒目地表达各个物理量间的变化关系,从图线上可以简便求出实验需要的某些结果,一些复杂的函数关系也可以通过一定的变化用图形来表现。

想要了解更多关于数据分析的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。

③ 怎样对数据进行分析

数据分析方法:

1、对比分析法

对比分析法是通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。

2、分组分析法

分组分析法是根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。

所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。

3、预测分析法

预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。

预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。

比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。

使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。

5、AB测试分析法

AB测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。

例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

④ 怎样对数据进行分析—数据分析的六大步骤

        时下的大数据时代与人工智能热潮,相信很多人都会对数据分析产生很多的兴趣,其实数据分析师是Datician的一种,指的是不同行业中,专门从事行业数据收集,整理,分析,并依据数据做出行业研究、评估和预测的专业人员。

        很多人学习过数据分析的知识,但是当真正接触到项目的时候却不知道怎样去分析了,导致这样的原因主要是没有属于自己的分析框架,没有一个合理的分析步骤。那么数据分析的步骤是什么呢?比较让大众认可的数据分析步骤分为

六大步骤。只有我们有合理的分析框架时,面对一个数据分析的项目就不会无从下手了。

        无论做什么事情,首先我们做的时明确目的,数据分析也不例外。在我们进行一个数据分析的项目时,首先我们要思考一下为什么要进展这个项目,进行数据分析要解决什么问题,只有明确数据分析的目的,才不会走错方向,否则得到的数据就没有什么指导意义。

        明确好数据分析目的,梳理分析思路,并搭建分析框架,把分析目的分解成若干不同的分析要点,即如何具体开展数据分析,需要从那几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑化,确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析的目的。

        数据收集的按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。常见的数据收集方式主要有以下几种

        一般地我们收集过来的数据都是杂乱无章的,没有什么规律可言的,所以就需要对采集到的数据进行加工处理,形成合适的数据样式,保证数据的一致性和有效性。一般在工作中数据处理会占用我们大部分的时间

        数据处理的基本目的是从大量的,杂乱无章的数据中抽取到对接下来数据分析有用的数据形式。常见的数据处理方式有 数据清洗、数据分组、数据检索、数据抽取 等,使用的工具有 Excel、SQL、Python、R 语言等。

        对数据整理完毕之后,就需要对数据进行综合的分析。数据分析方式主要是使用适当的分析方法和工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。

        在确定数据分析思路的阶段,就需要对公司业务、产品和分析工具、模型等都有一定的了解,这样才能更好地驾驭数据,从容地进行分析和研究,常见的分析工具有 SPSS、SAS、Python、R语言 等,分析模型有 回归、分类、聚类、关联、预测 等。其实数据分析的重点不是采用什么分析工具和模型而是找到合适的分析工具和模型,从中发现数据中含有的规律。

        通过对数据的收集、整理、分析之后,隐藏的数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然。一般情况下,是通过表格和图形的方式来呈现出来。多数情况下,人们通常愿意接受图形这样数据展现方式,因为它能更加有效、直观地传递出数据所要表达的观点。

        常用数据图表 有饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图、矩阵图 等图形,在使用图形展现的情况下需要注意一下几点:

        当分析出来最终的结果之后,我们是知道这部分数据展现出来的意义,适用的场景。但是如果想让更多人了解你分析出来的东西,让你的分析成果为众人所熟知,这时就需要一份完美的PPT报告,一个逻辑合理的故事。这样的分析结果才是最完美的。

        一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象,直观地看清楚问题和结论,从而产生思考。

                                                           数据分析的四大误区

1、分析目的不明确,不能为了分析而分析 。只有明确目的才能更好的分析

2、缺乏对行业、公司业务的认知,分析结果偏离实际 。数据必须和业务结合才有意义,清楚所在行业的整体结构,对行业的上游和下游的经营情况有大致的了解,在根据业务当前的需要,制定发展计划,归类出需要整理的数据,同时,熟悉业务才能看到数据背后隐藏的信息。

3、为了方法而方法,为了工具而工具 。只要能解决问题的方法和工具就是好的方法和工具

4、数据本身是客观的,但被解读出来的数据是主观的 。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析

⑤ 279 数据分析---在需求评估中的运用

第一部分   《 数据如何迭代商业模式 》课程要点

第二部分    练习题

刘老师提出了利用数据迭代商业模式的四阶段:数据分析、数据挖掘、数据产品商业化、数据分享平台。请结合身边实例分析其所处的阶段及表现,然后分析其进入下一阶段的可行性和路径。

数据分析 --- 在需求评估中的运用

需求是可以无限增长的,但是公司的财力、物力、人力都是有限的,当有限的资源面对无限的需求时,就需要我们对需求和问题进行评估,评估出最迫切最适合的需求来实现。需求评估,是一个信息和分析的过程。在头脑中的思考,有一点让人觉得空洞,而通过数据把每一个需求转化成实际的数值,让每个需求的价值更加明确。

我们通过下面的步骤,运用“数值”,来进行数据的具体评估。

第一步,通过“数据假设”假设需求实现所带来的价值

1. 收益:需求实现能带来多少的收益。假设需求实现可以带来多少用户,多少订单,多少传播等,并根据历史情况,转化为实际的现金数值,例如带来1个用户可以为公司创造实际人民币XX元。

2.成本:需求的实现需要多少的成本。假设需求实现需要投入多少人力成本,多少机器成本等开发资源,并根据现实情况,转化为实际的现金数值,例如实现某个需求,需要投入几个同学的多少工时,每个同学的平均工时工资是人民币XX元。

3. 价值 = 收益的现金数值 -成本的现金数值。

第二步,通过“数据假设”假设需求不实现会带来多少流失

流失:需求不实现带来多少流失。假设需求不实现会产生多少损失,流失多少用户,多少订单等,并转化为实际的现金价值,例如某需求不实现,会造成多少个用户的流失,一个用户的流失给公司带来人民币XX元的损失。

第三步,前两步我们为每个需求都带上了具体的价值和流失数据,借助“四象限”划分,就可以评估出每个需求的优先级别程度

纵坐标-价值:需求实现带来的具体经济收益;

横坐标-流失:需求不实现带来了具体的损失;

分成四个象限:“高价值-高流失”;“低价值-高流失”;“高价值-低流失”;“低价值-低流失”。

需求评估四象限图

通过象限法,对每个需求的优先级就很清晰了,我们首先需要关注的是“高价值-高流失”和“低价值-高流失”两个象限内的需求。因为负面影响总是最迫切需要解决的的,产品可以暂时没有新价值的产出和提供,但是带来高流失的漏洞和问题如果不解决对一个产品往往是致命的。例如如果“支付宝”存在“提现后余额并没有减少可以重复发起提现的漏洞”,那对于支付宝来说足以致命。

次要的,我们可以关注“高价值低流失”这一象限的需求,这一类的需求是我们产品持续发展的主要需求,能为我们产品不断的增加产品价值。

最后的,对于“低价值低流失”的需求可以暂时搁置,存放在需求池中,因为这一象限的需求对产品的影响很小。

回顾一个案例,在双十一前1个月,客服同学向产品同学反馈,部分现有客户和咨询客户(潜在客户)提出了希望在双十一前能提供“数据大屏”的功能,确定需求后,产品同学对这一需求进行了分析后,评估“简易版数据大屏”实现的价值和流失。

第一步,实现该需求的价值是多少?

通过反馈“该需求”用户占近段时间反馈用户数里的比例为10%,推断“该需求”上线后能带来100+订单(新订单+续订),平均客单价为400-500之间,带来的直接收益=40000元。实现“该需求”最大的成本为人力资源成本,需要投入1个研发同学+1个测试同学两周的时间。

假设平均工资为10000元,付出的成本大概为20000/20*10=10000元,该需求实现直接价值 = 40000-10000 = 30000元。

第二步,放弃该需求会有什么流失?

通过反馈“该需求”的老用户占近段时间反馈用户数量的比例为10%,因为不涉及核心功能点,推断放弃“该需求”只会使极小部分用户放弃续订转投竞品公司,预估导致流失的订单在10以内,带来的流失损失=4000元。

第三步,根据“象限法”可以评估该需求属于“高价值低流失”象限

结合当前资源以及本迭代没有“高流失”象限需要跟进的需求,产品同学决定讲“该需求”列入本次迭代中,最终在11月前上线,会产品带来了不错的订单数量,实现了客观的经济价值。

http://www.woshipm.com/data-analysis/3287037.html

阅读全文

与数据分析如何评估相关的资料

热点内容
智能小程序包怎么修改 浏览:370
品牌县级代理商是什么级别 浏览:120
新车没信息怎么办 浏览:97
体制内技术行业有哪些 浏览:825
qq小程序的游戏如何反馈 浏览:757
泡壳包装产品如何包装 浏览:383
菜市场卖菜的商户怎么好招商 浏览:36
喜欢消费的女人用什么产品 浏览:527
表格数据变日期了怎么办 浏览:470
秋眸是什么产品 浏览:547
门面招租怎么写信息 浏览:885
有人咨询代理怎么发朋友圈 浏览:915
什么叫长期交易者 浏览:321
混合型皮肤适合什么牌子的产品 浏览:306
程序员属于霍兰德里哪个类型 浏览:583
所需的五个数据在同一列如何引用 浏览:286
微商怎么做人脉代理 浏览:357
怎么去龙洞华侨职业技术学校 浏览:300
你是如何获取租房信息的 浏览:931
代理费多少钱什么意思 浏览:190