㈠ 数据分析行业的发展前景预测
也许未来十年会发生什么,我们很难有一个精确的描述,但我们却能通过一些数据和一些技术手段,了解未来十年的发展趋势。回顾过去,从90年代起,技术领域变革都深深地影响了我们普通人的生活,数据引领并推动着世界发展。无论是过去20年间,IDC预测的新创建数据量的飞速增长,亦或是过去10年间,新数据量的成倍递增,都足以说明,人工智能和数据统计分析将在未来10年,继续突破界限、推动创新和变革,为人类社会的发展带来机遇和挑战。下面小编就和大家来说说数据分析行业的发展前景预测,一起来看看吧!
㈡ 怎么写市场前景分析
对新产品的市场前景分析,不能叫做“可行性分析”,应该叫作“新产品投放市场效果预估”,如果是未投产的新项目,应该叫作“新项目投产可行性分析”。
对市场前景的预测判断主要有以下几个因素:
一、目前同类产品在市场的状况,包括品牌、质量、价位、产品附加值等。
二、目前同类产品市场竞争情况分析,主要评估目前的竞争水平和市场空间。
三、我公司产品的性价比、市场营销手段、产品综合优势和市场同类产品的对比。
四、从上述三点评估得出两个结论:一是我公司产品在目前市场竞争环境下的生存空间;二是我公司产品通过什么营销方式可以提升市场占有率。
㈢ 分析一个行业前景需要考虑哪些因素
从目前国民经济发展的总体态势和机械工业的增长潜力看,机械工业发展既面临挑,又有许多机遇。据分析,主要行业走势大体如下: 农机行业:由于国家继续加强对农业的投入和农产品收购的顺价政策实行,预计大型农机产品生产降幅将明显降低,农业运输机械将保持适度增长,一些小型、专用农机具市场需求将保持平稳。但受农民收入增长减慢和收入分流等因素的影响,预计农机生产低速增长的状态不可能扭转。 工程机械行业:预计随着国家对铁道、公路、机场、码头和城市公用基础设施等项目投资力度的加强,国内市场对工程机械产品的市场需求会有所改善。虽然今年企业生产涨幅会比去年有所降低,但全年工程机械行业仍将保持适度增长。 仪器仪表行业:从目前主要仪表产品的发展前景看,预计投资类仪表的市场需求会有所好转,受住房制度改革的推动,预计各种水表、电表需求将逐渐趋稳,光学仪器和消费类仪表将能够继续保持目前的增长态势,全年生产增长将在5%左右。 石化通用行业:由于石油化工通用设备行业的产品多系量大面广的辅机制造,尽管今年以来这个行业生产增幅逐月回落,但与其它机械制造行业比仍是基本适度的。从主要产品情况看,受海上石油发展的影响,石油钻采、炼油化工设备保持一定增长;气体压缩机、高中压阀门生产与化肥行业生产不景气有关,降幅都较大。从目前相关行业发展前景看,今后石化通用行业情况会有转机,生产增长会有所恢复,尤其是国家加大对年产30万吨及以上合成氨、48万吨及以上尿素、30万吨及以上乙烯成套设备等的技术改造会促进需求的平稳增长。 电工电器行业:从目前电工行业经济运行状况看,行业经济形势将进一步趋好,尤其是国家决定新建电厂和改造老厂所需的60万千瓦以下的火电机组将采用国产设备。加强中低压凝汽式机组、老机组和重点主力机组,3年内停运和报废1000万千瓦中低压小火电机组。集中资金加快电网特别是城市电网和农村电网的建设与改造等措施,无疑会促进电工行业的发展。同时,也应看到,由于电工行业一些大型主机厂资金供应受三角债困扰特别严重,这对下一步电工企业的正常生产运行会造成不利影响。
㈣ 从三个方向去预测大数据发展的未来趋势
从三个方向去预测大数据发展的未来趋势
技术的发展,让这个世界每天都在源源不断地产生数据,随着大数据概念被提出,这个技术逐渐发展成为一个行业,并被不断看好。那么大数据行业的未来发展如何?三个方向预测大数据技术发展未来趋势:
(一)社交网络和物联网技术拓展了数据采集技术渠道
经过行业信息化建设,医疗、交通、金融等领域已经积累了许多内部数据,构成大数据资源的“存量”;而移动互联网和物联网的发展,大大丰富了大数据的采集渠道,来自外部社交网络、可穿戴设备、车联网、物联网及政府公开信息平台的数据将成为大数据增量数据资源的主体。当前,移动互联网的深度普及,为大数据应用提供了丰富的数据源。
另外,快速发展的物联网,也将成为越来越重要的大数据资源提供者。相对于现有互联网数据杂乱无章和价值密度低的特点,通过可穿戴、车联网等多种数据采集终端,定向采集的数据资源更具利用价值。例如,智能化的可穿戴设备经过几年的发展,智能手环、腕带、手表等可穿戴正在走向成熟,智能钥匙扣、自行车、筷子等设备层出穷,国外 Intel、Google、Facebook,国内网络、京东、小米等有所布局。
企业内部数据仍是大数据主要来源,但对外部数据的需求日益强烈。当前,有 32%的企业通过外部购买所获得的数据;只有18%的企业使用政府开放数据。如何促进大数据资源建设,提高数据质量,推动跨界融合流通,是推动大数据应用进一步发展的关键问题之一。
总体来看,各行业都在致力于在用好存量资源的基础之上,积极拓展新兴数据收集的技术渠道,开发增量资源。社交媒体、物联网等大大丰富了数据采集的潜在渠道,理论上,数据获取将变得越来越容易。
(二) 分布式存储和计算技术夯实了大数据处理的技术基础
大数据存储和计算技术是整个大数据系统的基础。
在存储方面,2000 年左右谷歌等提出的文件系统(GFS)、以及随后的 Hadoop 的分布式文件系统 HDFS(Hadoop Distributed File System)奠定了大数据存储技术的基础。
与传统系统相比,GFS/HDFS 将计算和存储节点在物理上结合在一起,从而避免在数据密集计算中易形成的 I/O吞吐量的制约,同时这类分布式存储系统的文件系统也采用了分布式架构,能达到较高的并发访问能力。
在计算方面,谷歌在 2004 年公开的 MapRece 分布式并行计算技术,是新型分布式计算技术的代表。一个 MapRece 系统由廉价的通用服务器构成,通过添加服务器节点可线性扩展系统的总处理能力(Scale Out),在成本和可扩展性上都有巨大的优势。
(三) 深度神经网络等新兴技术开辟大数据分析技术的新时代
大数据数据分析技术,一般分为联机分析处理(OLAP,OnlineAnalytical Processing)和数据挖掘(Data Mining)两大类。
OLAP技术,一般基于用户的一系列假设,在多维数据集上进行交互式的数据集查询、关联等操作(一般使用 SQL 语句)来验证这些假设,代表了演绎推理的思想方法。
数据挖掘技术,一般是在海量数据中主动寻找模型,自动发展隐藏在数据中的模式(Pattern),代表了归纳的思想方法。
传统的数据挖掘算法主要有:
(1)聚类,又称群分析,是研究(样品或指标)分类问题的一种统计分析方法,针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。企业通过使用聚类分析算法可以进行客户分群,在不明确客户群行为特征的情况下对客户数据从不同维度进行分群,再对分群客户进行特征提取和分析,从而抓住客户特点推荐相应的产品和服务。
(2)分类,类似于聚类,但是目的不同,分类可以使用聚类预先生成的模型,也可以通过经验数据找出一组数据对象的共同点,将数据划分成不同的类,其目的是通过分类模型将数据项映射到某个给定的类别中,代表算法是CART(分类与回归树)。企业可以将用户、产品、服务等各业务数据进行分类,构建分类模型,再对新的数据进行预测分析,使之归于已有类中。分类算法比较成熟,分类准确率也比较高,对于客户的精准定位、营销和服务有着非常好的预测能力,帮助企业进行决策。
(3)回归,反映了数据的属性值的特征,通过函数表达数据映射的关系来发现属性值之间的一览关系。它可以应用到对数据序列的预测和相关关系的研究中。企业可以利用回归模型对市场销售情况进行分析和预测,及时作出对应策略调整。在风险防范、反欺诈等方面也可以通过回归模型进行预警。
传统的数据方法,不管是传统的 OLAP 技术还是数据挖掘技术,都难以应付大数据的挑战。首先是执行效率低。传统数据挖掘技术都是基于集中式的底层软件架构开发,难以并行化,因而在处理 TB 级以上数据的效率低。其次是数据分析精度难以随着数据量提升而得到改进,特别是难以应对非结构化数据。
在人类全部数字化数据中,仅有非常小的一部分(约占总数据量的 1%)数值型数据得到了深入分析和挖掘(如回归、分类、聚类),大型互联网企业对网页索引、社交数据等半结构化数据进行了浅层分析(如排序),占总量近 60%的语音、图片、视频等非结构化数据还难以进行有效的分析。
所以,大数据分析技术的发展需要在两个方面取得突破,一是对体量庞大的结构化和半结构化数据进行高效率的深度分析,挖掘隐性知识,如从自然语言构成的文本网页中理解和识别语义、情感、意图等;二是对非结构化数据进行分析,将海量复杂多源的语音、图像和视频数据转化为机器可识别的、具有明确语义的信息,进而从中提取有用的知识。
目前来看,以深度神经网络等新兴技术为代表的大数据分析技术已经得到一定发展。
神经网络是一种先进的人工智能技术,具有自身自行处理、分布存储和高度容错等特性,非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据,十分适合解决大数据挖掘的问题。
典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以 Hopfield的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以 ART 模型为代表。不过,虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。
随着互联网与传统行业融合程度日益加深,对于 web 数据的挖掘和分析成为了需求分析和市场预测的重要段。Web 数据挖掘是一项综合性的技术,可以从文档结构和使用集合中发现隐藏的输入到输出的映射过程。
目前研究和应用比较多的是 PageRank 算法。PageRank是Google算法的重要内容,于2001年9月被授予美国专利,以Google创始人之一拉里·佩奇(Larry Page)命名。PageRank 根据网站的外部链接和内部链接的数量和质量衡量网站的价值。这个概念的灵感,来自于学术研究中的这样一种现象,即一篇论文的被引述的频度越多,一般会判断这篇论文的权威性和质量越高。
需要指出的是,数据挖掘与分析的行业与企业特点强,除了一些最基本的数据分析工具外,目前还缺少针对性的、一般化的建模与分析工具。各个行业与企业需要根据自身业务构建特定数据模型。数据分析模型构建的能力强弱,成为不同企业在大数据竞争中取胜的关键。
㈤ 数据分析师职业前景如何主要是在哪些行业的公司需要具备哪些技能
数据分析要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,网络的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具。可以到九道门商业数据分析实训官网上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由赵强老师带了半年,现在基本上已经能熟练的搞这一套了。
㈥ 数据分析师这份职业的发展前景如何
引言、如今的数据分析师,是一个非常吃香的行业 ,因为数据分析师可以通过将数据进行分析来实现帮助企业的业务增长的一个目的,这个岗位受到了很多行业的欢迎,所以这个行业的市场需求量也逐渐变大 。但是这份行业都发展将近又是如何呢 ?
三、总结
所以从上面可以看出来数据分析师这项行业的发展前景还是非常不错的,我们完全可以朝着数据分析师的方向去发展。这样对我们未来工作也是有一定的帮助 。
㈦ 2020年Web前端行业发展前景和就业情况预测
1、Web前端人才需求还会持续增加
据国内权威数据统计,未来五年,我国信息化人才总需求量高达1500万—2000万人。其中“网络工程”“Web前端”等人才的缺口最为突出,所以2020年Web前端的市场需求还是很大的。更有甚者,目前不仅大型互联网公司拟相继成立了专属的Web 前端部门,中小型公司和创业公司也急需专业的Web前端工程师。
2、Web前端就业方向广
Web前端开发在软件开发中,就业门槛比较低,是比较好就业的,薪资待遇不断上升。在目前互联网时代,只要公司有需要开发互联网产品,包括网站、网页、H5、小程序、APP等等,就需要前端开发工程师岗位,具体的就业方向还可以按公司的技术需求来区分,侧重点各有不同,就业行业随着互联网的发展,已经变得越来越广泛了。
3、Web前端未来发展前途大好
随着5G时代的到来,之后在移动互联网领域将会出现新的开发场景,包括自动驾驶、车联网、物联网、人工智能、智能家居还有可穿戴设备等领域将带来大量的前端开发需求。有需求就会有市场,所以2020年Web前端还是会一如既往地“红”下去。
根据有关数据显示,Web前端开发行业是目前平均收入较高的行业之一,其从业人员平均年薪已逾十万元,有经验的Web前端开发工程师平均年薪一般在20万元以上。
以上就是小编分享的Web前端行业发展前景,总之,从以上几点来看,2020年,Web前端还将继续是个值得大家选择的高薪热门职业。
㈧ 大数据在哪些领域有应用前景
近年来,大数据不断向世界的各行各业渗透,影响着我们的衣食住行。例如,网上购物时,经常会发现电子商务门户网站向我们推荐商品,往往这类商品都是我们最近需要的。这是因为用户上网行为轨迹的相关数据都会被搜集记录,并通过大数据分析,使用推荐系统将用户可能需要的物品进行推荐,从而达到精准营销的目的。下面简单介绍几种大数据的应用场景。
大数据让就医看病更简单。过去,对于患者的治疗方案,大多数都是通过医师的经验来进行,优秀的医师固然能够为患者提供好的治疗方案,但由于医师的水平不相同,所以很难保证患者都能够接受最佳的治疗方案。
而随着大数据在医疗行业的深度融合,大数据平台积累了海量的病例、病例报告、治愈方案、药物报告等信息资源.所有常见的病例、既往病例等都记录在案,医生通过有效、连续的诊疗记录,能够给病人优质、合理的诊疗方案。这样不仅提高医生的看病效率,而且能够降低误诊率,从而让患者在最短的时间接受最好的治疗。下面列举大数据在医疗行业的应用,具体如下。
(1) 优化医疗方案,提供最佳治疗方法。
面对数目及种类众多的病菌、病毒,以及肿瘤细胞时,疾病的确诊和治疗方案的确定也是很困难的。借助于大数据平台,可以搜集不同病人的疾病特征、病例和治疗方案,从而建立医疗行业的病人分类数据库。如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确地定位疾病。在制订治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制订出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业研发出更加有效的药物和医疗器械。
(2)有效预防预测疾病。
解决患者的疾病,最为简单的方式就是防患于未然。通过大数据对于群众的人体数据监控,将各自的健康数据、生命体征指标都集合在数据库和健康档案中。通过大数据分析应用,推动覆盖全生命周期的预防、治疗、康复和健康管理的一体化健康服务,这是未来健康服务管理的新趋势。当然,这一点不仅需 要医疗机构加快大数据的建设,还需要群众定期去做检查,及时更新数据,以便通过大数据来预防和预测疾病的发生,做到早治疗、早康复。当然,随着大数据的不断发展,以及在各个领域的应用,一些大规模的流感也能够通过大数据实现预测。
随着大数据技术的应用,越来越多的金融企业也开始投身到大数据应用实践中。麦肯锡的一份研究显示,金融业在大数据价值潜力指数中排名第一。下面列举若干大数据在金融行业的典型应用,具体如下。
(1) 精准营销。
银行在互联网的冲击下,迫切需要掌握更多用户信息,继而构建用户360立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。
(2) 风险管控。
应用大数据平台,可以统一管理金融企业内部多源异构数据和外部征信数据,更好地完善风控体系。内部可保证数据的完整性与安全性,外部可控制用户风险。
(3) 决策支持。
通过大数据分析方法改善经营决策,为管理层提供可靠的数据支撑,从而使经营决策更高效、敏捷、精准。
(4) 服务创新。
通过对大数据的应用,改善与客户之间的交互、增加用户黏性,为个人与政府提供增值服务,不断增强金融企业业务核心竞争力。
(5) 产品创新。
通过高端数据分析和综合化数据分享,有效对接银行、保险、信托、基金等各类金融产品,使金融企业能够从其他领域借鉴并创造出新的金融产品。
美国零售业曾经有这样一个传奇故事,某家商店将纸尿裤和啤酒并排放在一起销售,结果纸尿裤和啤酒的销量双双增长!为什么看起来风马牛不相及的两种商品搭配在一起,能取到如此惊人的效果呢?后来经过分析发现,这些购买者多数是已婚男士,这些男士在为小孩购买尿不湿的同时,会同时为自己购买一些啤酒。发现这个秘密后,沃尔玛超市就大胆地将啤酒摆放在尿不湿旁边,这样顾客购买的时候更方便,销量自然也会大幅上升。
之所以讲“啤酒-尿布”这个例子,其实是想告诉大家,挖掘大数据潜在的价值,是零售业竞争的核心竞争力,下面列举若干大数据在零售业的创新应用,具体如下。
(1) 精准定位零售行业市场。
企业想进人或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进人或者开拓这块市场。通常需要分析这个区域流动人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样等等,这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是市场定位过程。
(2) 支撑行业收益管理。
大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,而传统的数据分析大多采集的是企业自身的历史数据来进行预测和分析,容易忽视整个零售行业信息数据,因此难免使预测结果存在偏差。企业在实施收益管理过程中如果能在自有数据的基础上,依靠一些自动化信息采集软件来收集更多的零售行业数据,了解更多的零售行业市场信息,这将会对制订准确的收益策略,赢得更高的收益起到推进作用。
(3) 挖掘零售行业新需求。
作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值取向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制定合理的价格及提高服务质量,从中获取更大的收益。
㈨ 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显着提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显着提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。