A. 电商企业是如何依靠大数据进行精准营销的
信息大数据时代,电商企业采用信息技术来收集和储存大量的消费者信息资源,并对其进行分析处理,来进行精准的市场定位,以及确定目标消费群体,为实施精准营销做第一手准备。之后利用大数据平台对目标消费群体进行属性分析、筛选、分类标记,建立用户个性标签,针对用户的不同个性需求,提供精准的个性化产品和服务,实现线上广告的精准投放。
电商企业想要做全局性和系统性的决策,不能仅凭大量的数据,还要加上商业分析,大数据与商业分析的结合才能称得上是大数据精准营销。在商业分析里,必须先了解市场,了解某个领域的消费者真正的需求;其次要了解行业,包括行业的特征、要求和规则;最后才是懂企业的运营,把多个模块和资源有序地整合起来,从而共同创造价值。这些具备后,用大数据进行适度辅佐,在商业的主导下,真正发挥大数据的作用。下面我们将用一个例子来说明:电商企业是如何依靠大数据进行精准营销的。
项目背景:
年中大促期间,电商平台的护肤品各类品牌竞争激烈,某护肤品品牌想借助大数据营销平台完成两款面膜的线上推广。利用大数据平台的精准定向方式,针对全国18岁以上的女性进行线上广告的推送,为活动网站引入高质量客流,促进消费者和品牌的深度互动。
投放方案
1、优选投放媒体
优选几个国内主流媒体和与产品相关性高的高质量媒体,分别采用Banner、信息流和视频贴片的广告形式进行投放。通过平台一站式操作对这些媒体进行竞价广告投放。当用户点击广告后对其进行标记。
2、MOB数据定向
通过MOB大数据,智能分析移动设备拥有者的属性以及设备中的APP构成,锁定女性用户且安装有美妆类APP的移动设备,针对这对这类设备进行全媒体广告投放,对用户进行广告包围,加深用户印象,增加用户购买意向。
3、重定向
标记活动落地页到访人群,当他们浏览有可竞价广告位的媒体时,发起追踪投放,吸引对本广告内容感兴趣的访客重新返回活动落地页。
4、投放优化
通过投放反馈的数据,我们从这几方面进行优化:
1、媒体平台优化,筛选出高点击率媒体平台,排除低点击率平台;
2、投放时段优化,排除低点击率时段,集中投放在高点击率时段;
3、素材优化,筛选出高点击率素材并替换掉低点击率素材。
投放效果
在本次的线上推广中,小蜜蜂数据平台全程实时监测投放数据,其中18~24岁的女性访客量占比为50%;25~29岁的女性访客量占比为32%;30~34岁的女性访客量占比为18%。每位独立访客的付费比预期值要低20%,点击量比预期值要高25%,到站转化率超过预期值高15%。
此案例可看出电商企业借用大数据进行精准营销可大大提高电商广告的精准度和命中率,在减少交易成本的同时也提高了交易效率,大大提升了整体的电商服务水平,实现企业利益最大化。
B. 大数据下如何做好电商运营
首先,要了解什么是大数据营销?
大数据营销是指通过互联网采集大量的行为数据,首先帮助广告主找出目标受众,以此对广告投放的内容、时间、形式等进行预判与调配,并最终完成广告投放的营销过程。
大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销的核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人。
大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。
关于大数据营销的价值有哪些?
1、基于需求定制产品
如果想在行业有一席之地,只能增加产品的附加属性,找到产品的独特卖点。
2、开展精准推广活动
那么在大数据下如何做好电商营销?
大数据下人群定向技巧有哪些?
1、大数据下买家特征分析
1>账号等级;2>买家购物习惯;3>买家性别;4>买家大网时间;5>买家地域;6>;买家消费层次;7>;年龄层次;8>购物终端;pc还是移动......
2、大数据下产品属性分析应用
所有产品都是为顾客服务的,所以在选产品前,必须明确顾客需求买家属性分析,图片设计一定要场景、情景式营销。
契机
第一,用户行为与特征分析。只有积累足够的用户数据,才能分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。这一点,才是许多大数据营销的前提与出发点。
第二,精准营销信息推送支撑。精准营销总在被提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要就是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。。
第三,引导产品及营销活动投用户所好。如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品生产即可投其所好。
第四,竞争对手监测与品牌传播。竞争对手在干什么是许多企业想了解的,即使对方不会告诉你,但你却可以通过大数据监测分析得知。品牌传播的有效性亦可通过大数据分析找准方向。例如,可以进行传播趋势分析、内容特征分析、互动用户分析、正负情绪分类、口碑品类分析、产品属性分布等,可以通过监测掌握竞争对手传播态势,并可以参考行业标杆用户策划,根据用户声音策划内容,甚至可以评估微博矩阵运营效果。
第五,品牌危机监测及管理支持。新媒体时代,品牌危机使许多企业谈虎色变,然而大数据可以让企业提前有所洞悉。在危机爆发过程中,最需要的是跟踪危机传播趋势,识别重要参与人员,方便快速应对。大数据可以采集负面定义内容,及时启动危机跟踪和报警,按照人群社会属性分析,聚类事件过程中的观点,识别关键人物及传播路径,进而可以保护企业、产品的声誉,抓住源头和关键节点,快速有效地处理危机。
第六,企业重点客户筛选。许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。淘店家网店过户认为可以从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关;从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。
C. 网店运营之如何通过大数据运营店铺
随着互联网的快速发展,很多用户的资料和数据都在网络上流传,店铺也开始不断的通过一些大数据去进行分析,制定营销策略。那么对于依靠流量的电商平台来说,数据是尤为重要的。卖家经常逛淘宝时会发现很多时候打开这些平台时,展示出来的时我们最近搜索过的产品,这就是大数据时代的推送,平台会根据你曾经搜索过的产品,去为你推送相关产品,下面就来详细为各位卖家讲一下,希望可以帮助卖家更好的运营店铺。
1、改变传统商业模式
通过自有平台的原始数据积累,进行有针对性的客户行为分析,进一步利用所获取的数据定向推广。通过层层过滤和筛选,才能够形成对未来商业行为的强有力数据支撑。
2、重视内容营销
卖家可以利用文案等形式,吸引消费者的目光,增加产品的曝光率。当然小编这里说的文案一定是耳熟能详,且足够引发共鸣的,这样才能借助文字提高店铺的收益。而大数据的作用则是汇聚目标人群关注的热点、强共鸣性内容等。卖家可以通过文字化等手法,实现优质文案的打造。
3、关注客户个性化需求
相信各位消费者都想让自己的需求得到满足,想让众多电商平台能够了解自己的需求,及时推送精准的信息,方便自己随时找到想要的东西。这些在传统的产业中是无法实现的,但是通过大数据可以进行消费者的行为识别与归类,能够精准的的出消费者的个性化需求。
随着互联网大数据的快速发展,淘宝卖家的运营逐渐实现多样化且全面化,从中可以看出数据的重要性。建议卖家抓住大数据的步伐,这样才能更好的运营店铺。
D. 电商平台如何利用大数据做好用户体验
在中国,通过大数据人物画像来实现流量个性化已非新鲜事,同时在大洋彼岸的美国,目前已经更进一步,通过最先进的数据分析平台,电商可以通过社交平台等数据对用户个性特征进行分析,从而实现更精准的营销,而且并非“财大气粗”的中小企业也可以享受到这样的福利。
不是所有的行为数据都有价值对于电商而言,其对大数据分析的主要需求可以体现在两方面,一是快速反应出问题所在,二是发现新的用户群体
对于备受关注的后者,电商希望通过智能联网分析已有的数据,发掘并预测出用户的兴趣所在,刺激用户购买积极性,并将产品推向特定人群。
目前业界的普通实现方式是,通过用户网络上留下的历史信息、记录,来猜测喜好,例如相关图书推荐、机票航班推荐等,但失算之处可能在于精准度和推荐时机不尽人意,比如用户已经旅行归来,系统还在推荐往返机票。
目前美国有一种研究方向,通过非结构化数据分析技术对用户进行个性化维度分析,包括对用户在网络上更新的个人状态信息进行分析,如Twitter、Facebook,推定用户个性及特征,以精准定义个人并实现标签化,同时反馈给商家并与目标市场用户相匹配,从而实现产品的关联。
对此,美国数据分析科学家、Taste Analytics创始人及全美五大可视化研究中心的Derek Wang(汪晓宇)博士表示,传统的方式需要基于大量的行为数据进行分析,并相信所有的动作具有价值,但事实却并非这样,容易造成对精准度和时机的把握不尽人意;而通过对人在网络上留下的真实语言、说话方式、评价内容等进行个性化维度分析,更贴近人真实的本性,这当然也包括购买喜好,只有这样才能实现更加准确的产品购买需求挖掘。
电商商户的“福利”
目前,该分析技术在电商平台上更能直接释放效力的方式,便是针对中小型商户的解决方案:对用户产品评价进行分析,来优化产品、提升用户体验。
Derek Wang举例道,通过Taste Analytics Signals数据分析平台,亚马逊平台上的耳机商户,可以对平台上用户的产品评价及Facebook上的留言进行语义分析,得出对耳机品牌、电池寿命、品种型号的用户反馈,以及不同产品间如Bose与Sony的产品分析。
这对于美国为数众多的亚马逊、新蛋、易贝商户而言无疑十分受用,其可以及时对产品和销售过程进行优化。
另一个典型应用是电商平台本身。美国某着名的大型家居销售企业,在其电商网络平台上,通过刺激网络流量来买卖产品。利用数据分析平台,其不仅发现并解决了用户消费时信用卡连刷2次的问题,同时观察到网络流量在一周中的不平均分布,后续通过市场促销,改变了市场营销过程。
(用Taste Analytics Signals平台对Amazon某热销汽水的分析结果)
决策在数据之上而非数据本身
用户的特征来自于文本分析,用户在网络上说的每一句话都将可能成为分析点。无疑更多的数据将有力于对用户行为进行匹配,提高分析准确性,而这方面社交平台则提供了一个很好的非结构化数据的来源。
事实上,美国电商本身已经在开始着手整合社交网络的数据信息,例如闪购网站Myhabit建议用户通过亚马逊账号登陆;电商Macys需要用Facebook账号登陆(这样的整合在国内也并不鲜见)。对于用户,这样的登陆方式更方便快捷;对于商户,可以将个人信息关联起来;而对于大数据技术/服务提供商,数据分析服务便可以由此展开,进行深度数据挖掘。
在Derek Wang看来,此项围绕人的非结构化数据分析平台服务,不仅能提升结果的准确性,更重要的是它建立的不是一个推荐系统,而是一个增强智慧的过程。毕竟仅基于既有行为的数据分析会导致可能的失败,小到上述提及的机票推荐,大到金融领域采用数学模型的危险性在次贷危机中已经暴露无疑。
“由机器提取的数据内涵,通过图像的方法展示给企业决策者,决策者通过与机器互动后做出决定。数据分析平台是辅助企业决策者的工具,也是它的价值所在。” Derek Wang说道。
不谋而合,《纽约时报》资深撰稿人史蒂夫·洛尔曾着书大数据时评论,虽然决策活动对数据与分析的倚重与日俱增是大势所趋,但同时还要让常识发挥应有的作用,经验与直觉仍然在决策中占有一席之地,而好的直觉又往往建立在大量数据分析基础之上。
机器与人分工合作才更好,更加值得一提的是,直观的图像可视化的呈现方式,使得电商及商户的内部分析师即使没有IT背景,也可以轻松地掌握产品动态,从而帮助其赢得市场。
大数据确有裨益,但并不是所有企业都能成功掘金大数据;只有那些富有远见、重视系统且敢于投资的公司才会有所斩获。对于零售业而言,有三个重要战略可帮助电子商务成功运用大数据。
正确理解大数据
不必纠结于大数据到底是什么,试图计算出多少数据才算大数据是不明智的。首先,没有确切的数字或数量级可用作数据量的分界线,因为大数据不在“量”,而在“全”。通过对全面数据的分析可以发现相应的趋势,进一步预测未来。想要掌握大数据,必须具备“大数据”的思维模式,即关注于那些已帮助完成了某项任务的数据。从庞大的历史数据中寻找规律,从而预测未来;或者找出有关因素,对搜索最佳数据的系统进行改善,获得正确数据取得最大利益。
如何获取大数据?
大数据被炒热和巨无霸企业在其中获得的巨大商业价值密不可分,但这并不意味着大数据是只有大公司才买得起的“独有玩偶”。小公司也能拥有自己的“大数据”。虽然大多数电商企业仍处于起步阶段,但它们也可以收集数据,挖掘优秀人才帮助做出更加明智的决定。数据分析可以从小数据开始、效果立竿见影,随后发展成为大数据。即使一家小咖啡厅也能通过探寻顾客的饮用习惯、信用卡记录以及在线定位设置而建立自己的“大数据”。
尽管中小型企业还未完全配备企业先进的大数据线上工具和模式,但他们仍能从本公司历史数据中找出规律。例如,有了一两个月推广促销活动的历史数据后,服装电商公司就可以开始分析各个品类的销售表现情况,掌握一周或一个月内的最畅销和最滞销的销售品类信息,同时清楚了解长期内的平均增长率和复合增长率。这样的数据分析方法能提供产品销售额和产品销售表现的衡量指标,从而找出产品销售模式和趋势,做出下一步商业决策。这样将帮助企业实现更大的销售额,同时,无论有无市场推广活动,都可以监控产品的销售表现。
整合零售策略与大数据
从企业的角度来看,大数据的最大价值在于零售策略与大数据技术相结合。目前,由于消费者对于他们所希望的购物时间与购物方式的要求越来越高,现代零售业已变得愈发复杂。因此,零售商需要更加聪明地来服务顾客,更加灵活地选用库存和配送订单的地点,更加明确如何使用搜集到的顾客数据进行线上线下的交叉销售和追加销售。为了达成这一目的,零售商需要借助一个定制软件来制定以顾客为导向、基于数据的策略,以便于为顾客提供个性化服务。
此外,企业必须将零售策略与数据分析最大程度地相匹配,保证销售计划的实现。大数据最大的特点之一就是在于能够高速更新和处理信息。根据这一特性,商业数据一旦生成,就可以进行相应策略的制定,帮助公司赢得时间与空间调整市场策略,以最充分地发挥自身优势。这就像防洪预警:上游一旦有所警示,下游就应立即作出回应调整。例如,涉足线上的传统零售商,在一组货品的15分钟促销时间内,往往会准备三套应变策略,以确保商品按计划销售。 通过整合零售策略和大数据,企业将能够吸引更多消费者、为他们提供定制化服务,从而提升产品销售表现、增加销售额,进而扩大收益。
E. 一个企业,特别是电商类的,如何进行大数据分析
无论是电商类还是其他行业相关的互联网信息中都有大量的文本数据,所以进行大数据分析,很重要的一部分是文本分析。文本数据通常是非结构化的,采集文本数据后的一个关键环节是要将其转化为能被计算机理解和处理的结构化数据,才能进一步对其进行系统化的处理分析,提炼出有意义的部分。大致可以分为以下步骤:
1、数据采集
明确分析的目的和需求后,通过不同来源渠道采集数据。
2、文本清洗和预处理
文本清洗首要是把噪音数据清洗掉,然后根据需要对数据进行重新编码,进行预处理。
3、分词
在实际进行分词的时候,结果中可能存在一些不合理的情况。因此,在基于算法和中文词库建成分词系统后,还需要不断通过训练来提升分词的效果,如果不能考虑到各种复杂的汉语语法情况,算法中存在的缺陷很容易影响分词的准确性。
4、词频和关键词
词频就是某个词在文本中出现的频次。简单来说,一个词在文本中出现的频次越高,这个词在文本中就越重要,就越有可能是该文本的关键词。
5、语义网络分析
语义网络分析是指筛选统计出高频词以后,以高频词两两之间的共现关系为基础,将词与词之间的关系进行数字化处理,再以图形化的方式展示词与词之间的结构关系。这样一个语义网络结构图,可以直观地对高频词的层级关系、亲疏程度进行分析展现。
6、情感分析
情感分析,主要是分析具有情感成分词汇的情感极性(即情感的正性、中性、负性)和情感强烈程度,然后计算出每个语句的总值,判定其情感类别。还可以综合全文本中所有语句,判定总舆情数据样本的整体情感倾向。
7、数据可视化展现
通过可视化展现形式,可直观呈现多维度数据表现,用于总结、汇报等。
想要快速进行大数据分析,可通过新浪舆情通实现,系统一站式提供信息采集、大数据分析、可视化报告等服务,针对各行业还提供定制化大数据解决方案。
F. 在电商行业如何进行大数据分析的
电商行业相对于传统零售业来说,最大的特点就是一切都可以通过数据化来监控和改进。通过数据可以看到用户从哪里来、如何组织产品可以实现很好的转化率、你投放广告的效率如何等等问题。
当用户在电商网站上有了购买行为之后,就从潜在客户变成了价值客户。
我们一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里,所以对于这些客户,我们可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户扩展营销的可能性。
G. 电子商务中如何使用大数据
大数据在很多的领域中都有应用,而且大数据所涉及到的领域都有不同程度的进步和发展,这是一个值得欣慰的事情,当然也正是这个原因,很多的行业都争先恐后地使用大数据技术。当然,电子商务也不例外,在这篇文章中我们就给大家介绍一下电子商务领域使用大数据的思维方式,希望这篇文章能够帮助大家理解大数据在电子商务中的应用。
电子商务有了大数据技术的加持,于是摇身一变成为电子智能商务,而电子商务智能的原理就是大数据改变了电子商务模式,让电子商务更智能。商务智能,大数据时代重新获得定义。而现在,传统企业进入互联网,如果掌握了“大数据”技术应用途径之后,就会发现有一种豁然开朗的感觉,这些能够给我们带来很多的体验。而大数据时代不是说我们这个时代除了大数据什么都没有,哪怕是在互联网和IT领域,它也不是一切,只是说在我们的时代特征里面这一个特殊的属性,从而导致我们对以前的生存状态,以及我们个人的生活状态的一个差异化的一种表达。
当然,如果软件有了大数据,那么这个软件就会更加智能,虽然说,我们仍处于大数据时代来临的前夕,但我们的日常生活已经离不开它了。交友网站根据个人的性格与之前成功配对的情侣之间的关联来进行新的配对。具有自我修正功能的智能手机通过分析我们以前的输入,将个性化的新单词添加到手机词典里。在不久的将来,世界许多现在单纯依靠人类判断力的领域都会被计算机系统所改变甚至取代。计算机系统可以发挥作用的领域还有更多的方向,不只是我们认为的交友与娱乐。
如果大数据能够运用到疾病诊断、推荐治疗措施,甚至是识别潜在犯罪分子上,这样就能够造福人类。这就像互联网通过给计算机添加通信功能而改变了世界,大数据也将改变我们生活中最重要的方面,因为它为我们的生活创造了前所未有的可量化的维度。用电子商务更智能的思维方式思考问题,解决问题。大家都知道,人脑思维与机器思维有很大差别,但机器思维在速度上是取胜的,而且智能软件在很多领域已能代替人脑思维的操作工作。人们需要的所有信息都可得到显现,而且每个人互联网行为都可记录,这些记录的大数据经过云计算处理能产生深层次信息,经过大数据软件挖掘,企业需要的商务信息都能实时提供,为企业决策和营销、定制产品等提供了大数据支持。
关于大数据加持的电子商务的具体情况我们就给大家讲解到这里了,通过这篇文章相信大家对大数据应用于电子商务有了一定的了解。其实我们可以发现,大数据是一个十分有用的技术,同时也正因为各个领域的使用而进步,而这些领域也因为应用大数据而获得了发展,这就形成了双赢。