Ⅰ 数据分析能够解决哪些日常问题
如下:
1、可以解决成本与利润的问题,提高效率。
2、可以解决合理与公平的问题,数据说话。
3、可以解决目标与奖金的问题,合理安排。
目的:
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。
Ⅱ 大数据预处理包含哪些
一、数据清理
并不一定的数据全是有使用价值的,一些数据并不是大家所关注的内容,一些乃至是彻底不正确的影响项。因而要对数据过滤、去噪,进而获取出合理的数据。
数据清理关键包括忽略值解决(缺乏很感兴趣的属性)、噪声数据解决(数据中存有着不正确、或偏移期待值的数据)、不一致数据解决。
忽略数据能用全局性变量定义、属性平均值、将会值填充或是立即忽视该数据等方式;噪声数据能用分箱 (对初始数据开展排序,随后对每一组内的数据开展平滑处理)、聚类算法、电子计算机人工服务定期检查重归等方式 除去噪声。
二、数据集成与转换
数据集成就是指把好几个数据源中的数据融合并储存到一个一致的数据库文件。这一全过程中必须主要处理三个难题:模式匹配、数据冗余、数据值冲突检测与解决。
因为来源于好几个数据结合的数据在取名上存有差别,因而等额的的实体线常具备不一样的名字。数据集成中最后一个关键难题就是数据值矛盾难题,具体表现为来源于不一样的统一实体线具备不一样的数据值。
三、数据规约
数据规约关键包含:数据方集聚、维规约、数据缩小、标值规约和定义层次等。
倘若依据业务流程要求,从数据库房中获得了剖析所必须的数据,这一数据集将会十分巨大,而在大量数据上开展数据剖析和数据发掘的成本费又非常高。应用数据规约技术性则能够 完成数据集的规约表明,促使数据集缩小的另外依然趋于维持原数据的一致性。在规约后的数据集在开展发掘,仍然可以获得与应用原数据集几近同样的剖析结果。
关于大数据预处理包含哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅲ 在数据清洗过程中主要进行怎样哪两类处理
输入数据后需要对数据进行预处理,只有处理得当的数据才能进到数据挖掘的步骤。而处理数据包括对数据数量和质量的处理。我按照少—多—乱来整理。
1 对缺失的数据有添补或删除相关行列方法,具体步骤自己判断(如果数据量本来就很少还坚持删除不就作死了是吧)
★添补:常用拉格朗日插值或牛顿插值法,也蛮好理解,属于数理基础知识。(pandas库里自带拉格朗日插值函数,而且这个好处是还可以在插值前对数据进行异常值检测,如果异常那么该数据就也被视为需要进行插值的对象)
★删除:这个也好理解,就是对结果分析没有直接影响的数据删删删爱少少不去管。
2 异常值
这个是否剔除需要视情况而定
★像问题1中视为缺失值重新插值
★删除含有异常值的记录(可能会造成样本量不足,改变原有分布)
★平均值修正(用前后两个观测值平均值)
综上,还是方案一靠谱。
人生苦短,学好python
3 数据量太多,有三种方法:集成,规约,变换
(1)数据是分散的时,这个就是指要从多个分散的数据仓库中抽取数据,此时可能会造成冗余的情况。此时要做的是【数据集成】。
数据集成有两方面内容:
①冗余属性识别②矛盾实体识别
属性:
对于冗余属性个人理解是具有相关性的属性分别从不同的仓库中被调出整合到新表中,而新表中由于属性太多造成冗余,这时可以靠相关性分析来分析属性a和属性b的相关系数,来度量一个属性在多大程度上蕴含另一个属性。(这个用python的pandas库里corr()函数也可以实现),检测出了再将其删除。
实体:(这个是要靠自己甄别源表,所以源仓库里的实体含义要清楚)
a,同名异义——改名字
b,异名同义——删一个
c,单位不统一—换
(2)数据规约
又包括两方面
属性规约和数量规约
①属性规约:就是减少属性个数或合并旧属性成一个新属性,可以特征子集选择(删除不需要作挖掘的属性),主成分分析(通过对方差的决定性大小分析并降维),决策树归纳,向前/向后删除。
具体的如果不了解可以找个实例试一下。
②数量规约:通过选择替代的,较小的数据来减少数据量,包括有参数和无参数。
有参数:建模,并且只需存放模型的参数,例如一些回归模型,用参数来评估数据。
无参数:需要存放实际数据,用图表存放并显示数据,例如用直方图时可把步长设置一定的区间,来衡量区间内的频数,也起到了规约的目的。还有一些聚类(用簇来替换实际数据)。还有抽样(聚类抽样,分层抽样)
Ⅳ 有哪些数据预处理的方法
1、数据清理数据清理(data cleaning) 的主要思想是通过填补缺失值、光滑噪声数据,平滑或删除离群点,并解决数据的不一致性来“清理“数据。如果用户认为数据时脏乱的,他们不太会相信基于这些数据的挖掘结果,即输出的结果是不可靠的。
2、数据集成
数据分析任务多半涉及数据集成。数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。这些源可能包括多个数据库、数据方或一般文件。
3、数据规约
数据归约技术可以用来得到数据集的归约表示,它小得多,但仍接近地保持原数据的完整性。 这样,在归约后的数据集上挖掘将更有效,并产生相同(或几乎相同)的分析结果。
4、数据变换
数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。
Ⅳ 大数据可以解决的问题有哪些
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
第四,大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
Ⅵ 【数据分析】-006-数据预处理-数据规约
在大数据集上进行复杂的数据分析和挖掘需要很长的时间,数据规约产生更小但保持原 数
据完整性的新数据集。在规约后的数据集上进行分析和挖掘将更有效率。
属性规约通过属性合并来创建新属性维数,或者直接通过删除不相关的属性(维)来减少数据维数,从而提高数据挖掘的效率、降低计算成本。属性规约的目标是寻找出最小的属性子集并确保新数据子集的概率分布尽可能地接近原来数据集的概率分布。
逐步向前选择、逐步向后删除和决策树归纳是属于直接删除不相关属性(维)方法。主成分分析是一种用于连续属性的数据降维方法,它构造了原始数据的一个正交变换,新空间的基底去除了原始空间基底下数据的相关性,只需使用少数新变量就能够解释原始数据中的大部分变异。在应用中,通常是选出比原始变量个数少,能解释大部分数据中的变量的几个新变量,即所谓主成分,来代替原始变量进行建模。
1)设原始变量 的 n 次观测数据矩阵为:
2)将数据矩阵按列进行中心标准化。为了方便,将标准化后的数据矩阵仍然记为X。
3)求相关系数矩阵 的定义为:
其中,
4)求&的特征方程 的特征根 。
5)确定主成分个数 根据实际问题确定,一般取80%。
6)计算m个相应单位特征向量:
7)计算主成分:
在 Python 中,主成分分析的函数位于 Scikit-Leam 下:
sklearn.decomposition.PCA(n_components = None, = True, whiten = False)
参数说明:
原始数据从8维被降维到了3维,关系式由公式确定,同时这3维数据占了原始数据95%以上的信息。
数值规约指通过选择替代的、较小的数据来减少数据量,包括有参数方法和无参数方法两类。
有参数方法是使用一个模型来评估数据,只需存放参数,而不需要存放实际数据,例如回归(线
性回归和多元回归)和对数线性模型(近似离散属性集中的多维概率分布)。无参数方法就需要
存放实际数据,例如直方图、聚类、抽样(采样)。
用于数据规约时,抽样最常用来估计聚集査询的结果。在指定的误差范围内,可以确定 (使用中心极限定理)估计一个给定的函数所需的样本大小。通常样本的大小 s 相对于 N 非常 小。而通过简单地增加样本大小,这样的集合可以进一步求精。