❶ 优秀的数据分析报告一般包含哪些内容
1、标题页
标题页需要写明报告的题目,题目要精简干练,根据版面的要求在一两行内完成。标题是一种语言艺术,好的标题不仅可以表现数据分析的主题,而且能够激发读者的阅读兴趣,因此需要重视标题的制作,以增强其艺术性的表现力。
2、目录
目录可以帮助读者快捷方便地找到所需的内容,因此,要在目录中列出报告主要章节的名称。如果是在Word中撰写报告,在章节名称后面还要加上对应的页码,对于比较重要的二级目录,也可以将其列出来。所以,从另外一个角度说,目录也就相当于数据分析大纲,它可以体现出报告的分析思路。但是目录也不要太过详细,因为这样阅读起来让人觉得冗长并且耗时。
此外,通常公司或企业的高层管理人员没有时间阅读完整的报告,他们仅对其中一些以图表展示的分析结论会有兴趣,因此,当书面报告中没有大量图表时,可以考虑将各章图表单独制作成目录,以便日后更有效地使用。
3、前言
前言的写作一定要经过深思熟虑、前言内容是否正确,对最终报告是否能解决业务问题,能够给决策者决策提供有效依据起决定性作用。前沿是分析报告的一个重要组成部分,主要包括分析背景、目的及思路三方面∶为何要开展此次分析?有何意义?通过此次分析要解决什么问题?达到何种目的?如何开展此次分析,主要通过哪几方面开展?
4、正文
正文是数据分析报告的核心部分,它将系统全面地表述数据分析的过程与结果。
撰写正文报告时,根据之前分析思路中确定的每项分析内容,利用各种数据分析方法,一步步地展开分析,通过图表及文字相结合的方式,形成报告正文,方便阅读者理解。
5、结论与建议
结论是以数据分析结果为依据得出的分析结果,通常以综述性文字来说明。它不是分析结果的简单重复,而是结合公司实际业务,经过综合分析、逻辑推理形成的总体论点。结论是去粗取精、由表及里而抽象出的共同、本质的规律,它与正文紧密衔接,与前言相呼应 ,使分析报告首尾呼应。结论应该措辞严谨、准确、鲜明。
建议是根据数据分析结论对企业或业务等所面临的问题而提出的改进方法,建议主要关注在保持有时候及改进劣势等方面。因为分析人员所给出的建议主要是基于数据分析结果而得到的。会存在局限性,因此必须结合公司的具体业务才能得出切实可行的建议。
6、附录
附录是数据分析报告的一个重要组成部分。一般来说,附录提供正文中涉及而未予阐述的有关资料,有时也含有正文中提及的资料,从而向读者提供一条深入数据分析报告的途径。它主要包括报告中涉及的专业名词解释、计算方法、重要原始数据、地图等内容。每个内容都需要编号,以备查询。
当然并不是要求每篇报告都有附录,附录是数据分析报告的补充,并不是必需的,应该根据各自的情况再决定是否需要在报告结尾处添加附录。
❷ 数据分析包括哪些方面
1. Analytic Visualizations(可视化分析)不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
❸ 常用的数据分析方法有哪些常用的数据分析方法都有什么
1、分组分析法。分组分析法是为了对比,把总体中不同性质的对象分开,以便进一步了解内在的数据关系,因此分组法必须和对比法结合运用。
2、结构分析法。结构分析法指分析总体内的各部分与总体之间进行对比的分析方法及总体内各部分占总体的比例,属于相对指标。一般某部分的比例越大,说明其重要程度越高,对总体的影响越大。
3、平均分析法。平均分析法是运用计算平均数的方法来反映总体在一定时间、地点条件下某一数量特征的一般水平。
4、漏斗分析法。漏斗分析法是结合对比分析法分组分析,比较同一环节优化前后、不同用户群、同行类似的转化率通过漏斗各环节业务数据的比较,能够直观地发现和说明问题所在。
❹ 数据分析具体包括哪些方面
1. Analytic Visualizations(可视化分析),不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法),可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力),数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎),我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理),数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
❺ 优秀的数据分析思维具有哪些特性
1、落地性强
举个比方,一家电商公司要进步GMV?
A剖析师:GMV=每个人消费金额的综合,只需进步每个用户的消费金额,就能够进步GMV,那具体如何做呢?
B剖析师:GMV=客单价*消费用户数,那只需做2个假设即可,假设客单价不变,咱们只需添加消费用户数就能够添加,假设消费用户数不变,只需进步客单价就能够进步GMV收入,再抱负的状态都是同时进步,但仍是不行详尽,仅仅找到了问题的方向
C剖析师:GMV=客单价*消费用户数,先经过公式法找到了问题要突破和剖析的方向,接着凭借数据更深化的剖析,比方客单价的散布是什么姿态的?提高的空间有多大?哪些人的能够提高?这些人都有什特征?接下来你能够
能够告知运营:经过满减来刺激仍是经过买赠来刺激呢?
能够告知产品:对哪些人进行购买引导(推荐)作用会好?
等等,所有的剖析思想都是为了让你找到正确的方向,要问什么是好思想,好的数据剖析,那落地性一定是第一位,上面的三个剖析师都用了公式法,第一个跑偏了,第二个仅仅找到了方向,那第三个其实便是他人喜欢的数据剖析师,这儿仅仅简单举个比方,让咱们明白其中的道理。
2、有条理性
要让剖析思想变的有条理,就要引入一个常用的思想,叫金字塔原理,其实咱们不用被这个名词吓住。
用一个场景来解析以下,比方咱们去超市,你会发现同类的产品就会集在一起,生果区、肉食区、海鲜区、零食区等等,那其实剖析也是相同的,只需对指标+维度做好分类,就能够保证根本的条理性了,但尽量不要存在重复和交叉。
3、意图性强
做剖析最重要的剖析的意图,做剖析无非解决2大类问题:1、找到病因,对症下药;2、验证决议计划方向,提供数据支持;那对应的角度也是相同的,第一类叫后验剖析,便是清晰出了问题,找原因,第二类叫先验剖析,要先假设再验证,还未发生。
4、可衡量
好的剖析思想,不光能够想清楚,还能够给出接地气的举动方式,那举动后的作用如何衡量呢?这也是要考虑的工作,大千世界,无奇不有,计划与实际之间的差距,便是咱们成长的地方,而这个缝隙常常被很多人忽略。
关于优秀的数据分析思维具有哪些特性,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❻ 常见的数据分析方法有哪些 有哪些常见的数据分析方法
1、细分分析:分析的基础是细分,细分数据分析主要分为两类,一类逐步分析,比如:来上海市的访客可分为徐汇,闵行等区;另一类是维度交叉。细分用于解决所有问题,也是比较基础的分析。
2、对比分析:对比分析主就是把两个关联数据放在一起对比分析,可以对比大小,水平高低,时间,速度快慢等相对数值,通过对比可以找出不同的问题,在相同维度上。常见的对比方法包括:时间对比,空间对比,标准对比。
3、漏斗分析:漏斗分析适用于交易型的业务,最常用的就是电商业务,采用漏斗分析出有多少流量量,多少新用户,多少用户购买了产品等。
❼ 优质的数据分析工具分为哪些种类
1、网站统计分析工具
网站统计分析工具就很常见了,大家常听说的有CNZZ统计、站长工具、爱站网等,主要是为网站运营者提供代码统计数据支持,网站运营者可以在上述提到的相关网站注册账号,然后申请统计代码,获得代码后再植入到网站对应位置即可。大约过几天就可以在你注册的平台看到网站的相关数据了。
2、自媒体分析工具
自媒体分析工具就比较容易了,不需要占用运营者太多的时间去整理代码,所有的数据都是直接后台形成的,不管是微博、微信公众号还是今日头条等自媒体平台,都具有完整的数据统计功能,作为运营者只需要通过后台自带的分析工具就可以直观的看到用户增长等相关数据了。
3、第三方分析工具
这种工具通常是指非官方平台自带的统计工具,需要官方授权后才可以使用的数据分析工具,毕竟不是所有平台都有自带统计工具,第三方分析工具需要运营者单独注册账号,且需要相关平台的授权才可以使用,不过一旦授权成功,那看数据的操作就与自媒体分析工具一样方便简单和直观了。
4、表格
这种方式比较适合excel玩得好的人了,数据来源通常要么是后台导出,要么是人工统计。人工统计的数据一般会包括每天发布文章的数量、后台互动的数量与类别、同行口碑的分析等,因为这些数据统计是一般平台都不含有的,那么自然就需要人工亲自查阅相关数据进行统计了。
❽ 主流数据分析工具有哪些
1、Excel
Excel 是最基础也最常用的数据分析软件,可以进行各种数据的处理、统计分析和辅助决策操作。
2、SAS软件
SAS是全球最大的软件公司之一,是由美国NORTH CAROLINA州立大学1966年开发的统计分析软件。SAS把数据存取、管理、分析和展现有机地融为一体,功能非常强大。
3、R软件
R是一套完整的数据处理、计算和制图软件系统。具备数组运算工具(其向量、矩阵运算方面功能尤其强大),完整连贯的统计分析工具,优秀的统计制图功能。
4、SPSS
SPSS是世界上最早的统计分析软件,也是比较成熟的分析工具,操作简便、编程方便、功能强大。
5、Python
Python可以说是现在进行数据分析处理的主流软件工具了,强大的库和编程特性,可以帮助我们快速处理大规模的数据分析和挖掘任务。
❾ 数据分析包括哪些内容
1.数据获取
数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。
2.数据处理
数据的处理需要掌握有效率的工具:Excel基础、常用函数和公式、数据透视表、VBA程序开发等式必备的;其次是Oracle和SQL sever,这是企业大数据分析不可缺少的技能;还有Hadoop之类的分布式数据库,也要掌握。
3.分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。SPSS、SAS、Python、R等工具,多多益善。
4.数据呈现
可视化工具,有开源的Tableau可用,也有一些商业BI软件,根据实际情况掌握即可。