导航:首页 > 数据处理 > 噪声数据处理包括哪些

噪声数据处理包括哪些

发布时间:2023-01-19 16:41:38

1. 大数据预处理包含哪些

一、数据清理


并不一定的数据全是有使用价值的,一些数据并不是大家所关注的内容,一些乃至是彻底不正确的影响项。因而要对数据过滤、去噪,进而获取出合理的数据。


数据清理关键包括忽略值解决(缺乏很感兴趣的属性)、噪声数据解决(数据中存有着不正确、或偏移期待值的数据)、不一致数据解决。


忽略数据能用全局性变量定义、属性平均值、将会值填充或是立即忽视该数据等方式;噪声数据能用分箱 (对初始数据开展排序,随后对每一组内的数据开展平滑处理)、聚类算法、电子计算机人工服务定期检查重归等方式 除去噪声。


二、数据集成与转换


数据集成就是指把好几个数据源中的数据融合并储存到一个一致的数据库文件。这一全过程中必须主要处理三个难题:模式匹配、数据冗余、数据值冲突检测与解决。


因为来源于好几个数据结合的数据在取名上存有差别,因而等额的的实体线常具备不一样的名字。数据集成中最后一个关键难题就是数据值矛盾难题,具体表现为来源于不一样的统一实体线具备不一样的数据值。


三、数据规约


数据规约关键包含:数据方集聚、维规约、数据缩小、标值规约和定义层次等。


倘若依据业务流程要求,从数据库房中获得了剖析所必须的数据,这一数据集将会十分巨大,而在大量数据上开展数据剖析和数据发掘的成本费又非常高。应用数据规约技术性则能够 完成数据集的规约表明,促使数据集缩小的另外依然趋于维持原数据的一致性。在规约后的数据集在开展发掘,仍然可以获得与应用原数据集几近同样的剖析结果。


关于大数据预处理包含哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

2. 数据预处理包括哪些内容

数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术。

通常来说,数据预处理涉及到——

1)数据清理

填写空缺的值,平滑噪声数据,识别、删除孤立点,解决不一致性

2)数据集成

集成多个数据库、数据立方体或文件

3)数据变换

规范化和聚集

4)数据归约

得到数据集的压缩表示,它小得多,但可以得到相同或相近的结果

5)数据离散化

数据归约的一部分,通过概念分层和数据的离散化来规约数据,对数字型数据特别重要。

3. 数据清洗中的噪音处理方法是什么

在科技高度发展的今天,很多技术不断的进步。就在最近的几年里,出现了很多的名词,比如大数据、物联网、云计算、人工智能等等。其中大数据的发展是非常普及的,现在很多的行业积累了很多的原始数据,通过数据的分析我们可以得到对企业的决策有帮助的数据,也就是说我们可以通过大数据去看清未来。当然,大数据离不开数据分析,数据分析离不开数据,但是海量的数据总是出现很多我们需要的数据,以及我们需要的数据存在杂质,需要我们对数据的清洗才能保证数据的可靠性。一般来说,数据中是存在噪音的,那么噪音是怎么清洗呢?本文提供了三个方法,分别是分箱法、聚类法、回归法。这三种方法各有各的优势,能够对噪音全方位的清理。
首先来给大家说一下什么是分箱法,所谓的分箱法,就是将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情况进行采取方法处理数据。看到这里很多朋友只是稍微明白了,但是并不知道怎么分箱。如何分箱呢?我们可以按照记录的行数进行分箱,使得每箱有一个相同的记录数。或者我们把每个箱的区间范围设置一个常数,这样我们就能够根据区间的范围进行分箱。其实我们也可以自定义区间进行分箱。这三种方式都是可以的。分好箱号,我们可以求每一个箱的平均值,中位数、或者使用极值来绘制折线图,一般来说,折线图的宽度越大,光滑程度也就越明显。

其次给大家说一下回归法。回归法就是利用了函数的数据进行绘制图像,然后对图像进行光滑处理。回归法有两种,一种是单线性回归,一种是多线性回归。单线性回归就是找出两个属性的最佳直线,能够从一个属性预测另一个属性。多线性回归就是找到很多个属性,从而将数据拟合到一个多维面,这样就能够消除噪声。
最后给大家说一下聚类法,所谓聚类法就是将抽象的对象进行集合分组,成为不同的集合,找到在集合意外的孤点,这些孤点就是噪声。这样就能够直接发现噪点,然后进行清除即可。
通过上述的内容的描述想必大家已经清楚了噪声清除的具体做法了吧,希望这篇文章能够给大家带来帮助,大家在清除噪声的时候可以使用上面提到的方法,这样才能够更好的清理噪声。最后感谢大家的阅读。

4. 噪声数据常用的处理方法不包含

关联分析。噪声数据是指在测量一个变量时测量值出现的相对于真实值的偏差或错误,噪声数据常用的处理方法不包含关联分析,数据会影响后续分析操作的正确性与效果。

5. 数据的预处理包括哪些内容

数据预处理(datapreprocessing)是指在主要的处理以前对数据进行的一些处理。如对大部分地球物理面积性观测数据在进行转换或增强处理之前,首先将不规则分布的测网经过插值转换为规则网的处理,以利于计算机的运算。另外,对于一些剖面测量数据,如地震资料预处理有垂直叠加、重排、加道头、编辑、重新取样、多路编辑等。
数据预处理的方法:
1、数据清理
数据清理例程通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。主要是达到如下目标:格式标准化,异常数据清除,错误纠正,重复数据的清除。
2、数据集成
数据集成例程将多个数据源中的数据结合起来并 统一存储,建立数据仓库的过程实际上就是数据集成。
3、数据变换
通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。
4、数据归约
数据挖掘时往往数据量非常大,在少量数据上进行挖掘分析需要很长的时间,数据归约技术可以用来得到数据集的归约表示,它小得多,但仍然接近于保持原数据的完整性,并结果与归约前结果相同或几乎相同。

6. 大数据清洗需要清洗哪些数据

数据清洗过程包括遗漏数据处理,噪声数据处理,以及不一致数据处理。


数据清洗的主要处理方法。

遗漏数据处理
假设在分析一个商场销售数据时,发现有多个记录中的属性值为空,如顾客的收入属性,则对于为空的属性值,可以采用以下方法进行遗漏数据处理。

忽略该条记录

若一条记录中有属性值被遗漏了,则将此条记录排除,尤其是没有类别属性值而又要进行分类数据挖掘时。

当然,这种方法并不很有效,尤其是在每个属性的遗漏值的记录比例相差较大时。

手工填补遗漏值

一般这种方法比较耗时,而且对于存在许多遗漏情况的大规模数据集而言,显然可行性较差。

利用默认值填补遗漏值

对一个属性的所有遗漏的值均利用一个事先确定好的值来填补,如都用“OK”来填补。但当一个属性的遗漏值较多时,若采用这种方法,就可能误导挖掘进程。

因此这种方法虽然简单,但并不推荐使用,或使用时需要仔细分析填补后的情况,以尽量避免对最终挖掘结果产生较大误差。

利用均值填补遗漏值

计算一个属性值的平均值,并用此值填补该属性所有遗漏的值。例如,若顾客的平均收入为 10000 元,则用此值填补“顾客收入”属性中所有被遗漏的值。

利用同类别均值填补遗漏值

这种方法尤其适合在进行分类挖掘时使用。

例如,若要对商场顾客按信用风险进行分类挖掘时,就可以用在同一信用风险类别(如良好)下的“顾客收入”属性的平均值,来填补所有在同一信用风险类别下“顾客收入”属性的遗漏值。

最后利用最可能的值填补遗漏值

可以利用回归分析、贝叶斯计算公式或决策树推断出该条记录特定属性的最大可能的取值。

例如,利用数据集中其他顾客的属性值,可以构造一个决策树来预测“顾客收入”属性的遗漏值。

最后一种方法是一种较常用的方法,与其他方法相比,它最大程度地利用了当前数据所包含的信息来帮助预测所遗漏的数据。

大数据中常见的清洗方法主要是按照数据清洗规则对数据记录进行清洗,然后,再经过清洗算法对数据进一步清洗,削减脏数据量,提高数据质量,为将来的分析和总结提供了有力的数据基础与理论依据。

阅读全文

与噪声数据处理包括哪些相关的资料

热点内容
银行系统交易码四位数是什么意思 浏览:712
什么技术能带回家 浏览:520
专利中多个技术点什么意思 浏览:314
宽带数据掉了怎么修 浏览:620
贵港水果批发市场在哪里 浏览:614
气温高温差大是可以养什么水产品 浏览:802
正大饲料黑河代理是哪里 浏览:642
excel如何输入规律数据 浏览:961
如何落实产品一致性检查 浏览:987
民房交易在什么地方办理 浏览:368
程序后面加点什么意思 浏览:346
小程序每日交作业怎么批改 浏览:99
交易成功结束是什么意思 浏览:652
poss机的代理怎么做 浏览:139
如何看懂交易所的k线图 浏览:320
朋友送的减肥产品怎么样 浏览:986
微信查社保的小程序是什么 浏览:810
政府名下房产交易有哪些规定 浏览:742
台风信息怎么查 浏览:686
记账代理哪个品牌好 浏览:75