导航:首页 > 数据处理 > 农业生产大数据怎么用

农业生产大数据怎么用

发布时间:2023-01-19 06:54:06

大数据如何监测管理现代农业

大数据如何监测管理现代农业
随着海量信息的爆发,农业跨步迈入大数据时代。如同其他行业的大数据应用,通过技术手段获取、收集、分析数据,能够有效地解决农业生产和市场流通等问题。
在大数据的推动下,农业监测预警工作的思维方式和工作范式发生了根本性的变化,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。本期嘉宾将带您了解大数据时代下,农产品监测预警如何运行以及未来面临的机遇。
大数据走进农业领域
数据库专家、图灵奖得主吉姆·格雷提出,数据密集型计算成为继试验科学、理论科学、计算科学之外的科学研究第四范式。大数据被学术界正式提出始于2008年9月《自然》杂志发表的“Big Data”系列专题文章,介绍了大数据应用所带来的挑战和机遇。
人们围绕研究数据的海量增加展开讨论。2011年,《科学》杂志刊登“Dealing with Data”专题,指出分析数据的能力远落后于获取数据的能力。
2012年3月,美国政府公布了“大数据研发计划”,基于大数据推动科研和创新。在我国,2012年5月香山科学会议第424次会议以“大数据”为主题,认为大数据时代已经来临,大数据已成为各行业共同面临的大问题。同年11月,香山科学会议第445次会议以“数据密集时代的科研信息化”为主题,讨论“大数据”时代的科研信息化问题。
这些事件都标志着“大数据”走入我们的生活。那么,大数据在农业中的应用如何?许世卫表示,“农业大数据是大数据在农业领域的应用和延展,是开展农产品监测预警工作的重要技术支撑。”
在他看来,农业大数据不仅保留了大数据自身具有的规模巨大、类型多样、价值密度低、处理速度快、精确度高和复杂度高等基本特征,还使得农业内部的信息流得到了延展和深化。
数据作为一种战略资源,可以有效地解决农业生产面临的复杂问题,从数据的获取、收集到分析,能够事半功倍地解决农业生产问题。
许世卫举例道,如通过传感器、作物本体检测手段,获取了土壤中的氮磷钾肥力等大量数据,对数据进行分析整理后可以有效指导农业生产中的施肥量、施肥时间等问题,进行合理规划,得出最合适的投入量,从而提高生产效率。
再如,大数据能够提前预测到未来市场的供给需求,可以有效降低生产投入并采取适当的措施进行智能化生产,对平抑物价起到调节作用。
大数据是监测预警的基础支撑
许世卫指出,农业大数据的数据获取、采集渠道和应用技术手段,无法通过人工调查得到数据,而需要依靠土壤传感器、环境传感器、作物长势生命本体传感器等手段支撑。由于技术更新、成本下降,使得农业有关生产市场流通等数据获取能力大幅提升。
“大数据使得农业进入全面感知时代,用总体替代样本成为可能;农业生产获得更多依靠数据的支撑,从此进入智慧农业时代;大量的数据可以优化生产布局,优化安排生产投入;大数据时代下,市场更有利于产销对接,在消费环节减少浪费以及减少产后损失。”许世卫说。
此外,大数据给农业的管理也带来变化。过去的农业管理主要依靠行政手段指导和安排生产,大数据有利于分析提取特征、总结趋势,通过市场信号的释放引导市场进而引导生产。
许世卫表示,农业大数据是现代化农业的高端管理工具。所谓监测预警就是监测数据,贯穿于农产品从生产到流通到消费到餐桌整个过程的产品流、物资流、资金流、信息流,使产销匹配、生产和运输匹配、生产和消费匹配。
农产品监测预警也是对农产品生产、市场运行、消费需求、进出口贸易及供需平衡等情况进行全产业链的数据采集、信息分析、预测预警与信息发布的全过程。
农产品监测预警还是现代农业稳定发展最重要的基础,大数据是做好监测预警工作的基础支撑。农业发展仍然面临着多重不安全因素,急需用大数据技术去突破困境。
这主要体现在:农业生产风险增加,急需提前获取灾害数据,早发现、早预警;农产品市场波动加剧,“过山车”式的暴涨暴跌时有发生,急需及时、全面、有效的信息,把握市场异常,稳定市场形势;食物安全事件频发,急需全程监管透明化,惩戒违规行为。
可以说,农产品监测预警对大数据的需求是迫切的。
农产品监测效果显着
农产品监测效果显着,大数据功不可没,主要体现在监测对象和内容更加细化、数据获取更加快捷、信息处理分析更加智能、数据服务更加精准等。
随着农业大数据的发展,数据粒度更加细化,农产品信息空间的表达更加充分,信息分析的内容和对象更加细化。
农业系统是一个包含自然、社会、经济和人类活动的复杂巨系统,在其中的生命体实时的“生长”出数据,呈现出生命体数字化的特征。农业物联网、无线网络传输等技术的蓬勃发展,极大地推动了监测数据的海量爆发,数据实现了由“传统静态”到“智能动态”的转变。
在大数据背景下,数据存储与分析能力将成为未来最重要的核心能力。未来人工智能、数据挖掘、机器学习、数学建模、深度学习等技术将被广泛应用,我国农产品监测预警信息处理和分析将向着系统化、集成化、智能化方向发展。
如中国农产品监测预警系统(China Agricultural Monitoring and Early Warning System,CAMES)已经在机理分析过程中实现了仿真化与智能化,做到了覆盖中国农产品市场上的953个主要品种,可以实现全天候即时性农产品信息监测与信息分析,用于不同区域不同产品的多类型分析预警。
在大数据的支撑下,智能预警系统通过自动获取农业对象特征信号,将特征信号自动传递给研判系统。研判系统通过对海量数据自动进行信息处理与分析判别,自动生成和显示结论结果,发现农产品信息流的流量和流向,在纷繁的信息中抽取农产品市场发展运行的规律。最终形成的农产品市场监测数据与深度分析报告,将为政府部门掌握生产、流通、消费、库存和贸易等产业链变化、调控稳定市场提供重要的决策支持。

㈡ 大数据常见的应用场景有哪些

大数据时代的出现简单的讲是海量数据同完美计算能力结合的结果,确切的说是移动互联网、物联网产生了海量的数据,大数据计算技术完美地解决了海量数据的收集、存储、计算、分析的问题。
对于大数据的应用场景,包括各行各业对大数据处理和分析的应用,最核心的还是用户需求。
一、医疗大数据看病更高效
除了较早前就开始利用大数据的互联网公司,医疗行业是让大数据分析最先发扬光大的传统行业之一。
二、生物大数据改良基因
当下,我们所说的生物大数据技术主要是指大数据技术在基因分析上的应用,通过大数据平台人类可以将自身和生物体基因分析的结果进行记录和存储,利用建立基于大数据技术的基因数据库。
三、金融大数据理财利器
大数据在金融行业的应用可以总结为以下五个方面:精准营销、风险管控、决策支持、效率提升、产品设计等。
四、零售大数据最懂消费者
零售行业大数据应用有两个层面,一个层面是零售行业可以了解客户消费喜好和趋势,进行商品的精准营销,降低营销成本。另一层面是依据客户购买产品,为客户提供可能购买的其它产品,扩大销售额,也属于精准营销范畴。另外零售行业可以通过大数据掌握未来消费趋势,有利于热销商品的进货管理和过季商品的处理。
五、电商大数据精准营销法宝
电商是最早利用大数据进行精准营销的行业,除了精准营销,电商可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单15分钟内将货物送上门,提高客户体验。
六、农牧大数据量化生产
大数据在农业应用主要是指依据未来商业需求的预测来进行农牧产品生产,降低菜贱伤农的概率。同时大数据的分析将会更见精确预测未来的天气气候,帮助农牧民做好自然灾害的预防工作。大数据同时也会帮助农民依据消费者消费习惯决定来增加哪些品种的种植,减少哪些品种农作物的生产,提高单位种植面积的产值,同时有助于快速销售农产品,完成资金回流。
七、交通大数据畅通出行
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。
尽管现在已经基本实现了数字化,但是数字化和数据化还根本不是一回事,只是局部的提高了采集、存储和应用的效率,本质上并没有太大的改变。而大数据时代的到来必然带来破解难题的重大机遇。
八、教育大数据因材施教
随着技术的发展,信息技术已在教育领域有了越来越广泛的应用。考试、课堂、师生互动、校园设备使用、家校关系……只要技术达到的地方,各个环节都被数据包裹。在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。
九、体育大数据夺冠精灵
大数据对于体育的改变可以说是方方面面,从运动员本身来讲,可穿戴设备收集的数据可以让自己更了解身体状况。媒体评论员,通过大数据提供的数据更好的解说比赛,分析比赛。数据已经通过大数据分析转化成了洞察力,为体育竞技中的胜利增加筹码,也为身处世界各地的体育爱好者随时随地观赏比赛提供了个性化的体验。尽管鲜有职业网球选手愿意公开承认自己利用大数据来制定比赛策划和战术,但几乎每一个球员都会在比赛前后使用大数据服务。
十、环保大数据对抗PM2.5
气象对社会的影响涉及到方方面面。传统上依赖气象的主要是农业、林业和水运等行业部门,而如今,气象俨然成为了二十一世纪社会发展的资源,并支持定制化服务满足各行各业用户需要。借助于大数据技术,天气预报的准确性和实效性将会大大提高,预报的及时性将会大大提升,同时对于重大自然灾害,例如龙卷风,通过大数据计算平台,人们将会更加精确地了解其运动轨迹和危害的等级,有利于帮助人们提高应对自然灾害的能力。
十一、食品大数据舌尖上的安全
大数据不仅能带来商业价值,亦能产生社会价值。随着信息技术的发展,食品监管也面临着众多的各种类型的海量数据,如何从中提取有效数据成为关键所在。可见,大数据管理是一项巨大挑战,一方面要及时提取数据以满足食品安全监管需求;另一方面需在数据的潜在价值与个人隐私之间进行平衡。相信大数据管理在食品监管方面的应用,可以为食品安全撑起一把有力的保护伞。
十二、调控和财政支出大数据令其有条不紊
政府利用大数据技术可以了解各地区的经济发展情况,各产业发展情况,消费支出和产品销售情况,依据数据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。
十三、舆情监控大数据
国家正在将大数据技术用于舆情监控,其收集到的数据除了解民众诉求,降低群体事件之外,还可以用于犯罪管理。

㈢ 农业大数据怎么玩

农业大数据怎么玩?中国民企在行动
科技正在以大数据的形式向农业领域渗透,行业整合成为中国农业生产方式变革的重要力量。决策者多次提出的“让农民成为令人羡慕职业”愿景,在科技的武装下正在接近实现。
在农业4.0时代前夜,中国农业生产的三要素已经悄然改变。农民面朝黄土背朝天的传统形象已被抛弃,科技的力量已使农村劳动力成为“网络新农人”。他们手中的农业大数据平台新工具,已经可以随时监测到土壤、天气、农作物等数据;而越来越多的土地流转,也赋予他们更大的规模效益。
中国农科院农发所研究员胡定寰曾向经济观察报记者描述了他对中国未来农业生产方式的构想。他认为未来中国的农业生产者应该是有技术的新农民,甚至是大学毕业生来经营适度规模的家庭农场。
市场主体已经开始意识到这一点。相对于国外,中国农业公司很多,但是依靠科技手段提供大数据的龙头农业公司却很少。这也是掣肘互联网科技和传统农业相结合的因素。曾是美国航空航天局(NASA)数据科学家的张弓试图改变这一现状,2015年他离开硅谷,带回了科学技术和大数据解决方案,也带回了在空间、气象和农业领域十分活跃的多位中国科学家。
张弓现在的身份是北京佳格天地科技有限公司创始人兼CEO。在美国,他从事卫星和气象大数据在农业和生态领域的应用,参与了美国农业部和美国森林局以及商业机构的重要项目,多项技术创新成果被应用于NASA地球信息共享系统。
张弓接受经济观察报采访时说,随着中国人口结构的变化以及农业的快速发展,农业正在发生深刻的变革,时下农业大数据的发展正当其时。
如果说留给大众印象深刻的是50年代大批留美科学家回国,21世纪的海外人才回国潮正在影响着中国经济结构变革。张弓就是这轮“现象级”中国留学人才回流中的一员。
佳格开始对接中国的农业公司,为农业生产提供技术领先的农业大数据平台。作为中国为数不多的农业大数据公司之一,佳格已经获得A轮融资6000万元,其最近的动态是,顺利与现代农业领先企业东方集团签署战略合作协议。
民企发力
当人们谈论大数据时,或许首先想到的并不是农业。作为高风险行业,农业生产面临天气、种植等太多不确定性。而作为最古老的生产形态,农业生产更是远落后于现代工业、服务业的社会产值。但是,随着越来越多的科技被用到农业领域,农业生产的高附加值已经逐渐显露。
城镇化、农村劳动力外流,已经让传统意义上农民已经开始主动或被动离开土地。根据此前农业部统计,截至2016年底,二轮承包地经营权流转面积达到4.7亿亩,占比约35.1%,现在2.3亿农户中有7000万农户已经不再直接经营其承包的全部或部分土地。
规模化和规范化的农业生产需要更多的技术支撑,大数据农业公司越来越有市场,走在前列的中国民营企业已经嗅到了这一商机。佳格此时开始登上时代的舞台。张弓告诉经济观察报记者,佳格的核心服务是通过提供作物大数据、气象预测以及病虫害预警服务,实现中国农业从传统“看天吃饭”的经验模式到“知天而作”的现代数据农业模式的转变。
农业大数据公司是服务农业公司的公司。张弓介绍:“具体来说,佳格可以为农业企业解决的痛点包括以气象、遥感和地面数据为基础的农业信息系统,比如给用户提供作物长势监测,结合地块级气象服务和病虫害预警、智能化灌溉植保,有效提升农作物的种植效率和精细化管理水平;另一类是农产品的评估需求,包括农业种植,农产品贸易和金融体系服务。”
这一次,佳格选中了以现代农业产业为主营业务的上市公司——东方集团,后者旗下的子公司东方粮仓已建立了从育种到餐桌的全产业链经营管理商业模式。2009年成立的东方粮仓先后在黑龙江省五常、方正、肇源这3个粮食主产区投资兴建了3个年综合加工能力为30万吨的现代化稻谷精深加工园区,并在五常核心产区流转13000亩优质水稻田。其与五常市政府合作建设的五常市农业高科技示范园区,已成为国内一流的现代农业示范园区。
与欧洲、美国大农业相比,中国人均耕地少、土地分散,这对农业数据收集造成很大困难。此外中国农业还存在大数据人才匮乏、大数据共享度低等困扰。农业部信息中心主任王小兵建议,中国应该加快构建数据资源体系,解决农业数据匮乏问题。
东方集团股份有限公司董事长孙明涛告诉经济观察报记者:“中国农业还缺乏一些大数据,农产品的市场行情每时每刻都在变化,在价格变化中吃亏的可能更多的是种地的人,他们从种植到收获,包括最后相关的消费数据都是极其缺乏的,所以需要一种方式能够快速收集和分析这些数据。”
孙明涛认为,不管是通过气象、气候数据,还是其他卫星得到的播种面积等相关数据,是能够有效解决生产这端数据供给的。
事实上,即使正在走向规模化经营,中国农业生产一定程度上也面临着“靠天吃饭”的困局。甚至在中国农业保险赔付率不高的现状下,一旦遇到暴雪、强降水等天灾,尤其是设施农业经营者很容易难以收回成本,更不用谈当年盈利了。根据经济观察报记者采访,2017年底安徽省雪灾时,一家投资上千万的合作社受灾严重,而按照当地保险公司规定,仅依据其对合作社核定损失额的40%进行赔付。
从防范风险、降低损失的角度来讲,大数据公司的出现解决了这两点的矛盾。张弓的独特经历也使得公司能够利用中、美、欧等数十颗卫星和无人机实时采集地面和气象数据,整合土壤、地块、作物、农资等全方位信息。
张弓介绍,这些信息通过拥有自主知识产权的图像解析和数据分析算法,为现代农业产业提供全产业链数据支持和管理服务,提高农业管理的科技化水平和精细化管理能力。此外,佳格已经可以做到进行产值预判,从金融和贸易的角度,服务场内场外期货公司、贸易公司。
农业4.0前夜
毫无疑问,中国农业生产正处于巨大变革之中。正如信息化和工业化的融合带来了工业4.0时代,这片土地上的互联网数据和传统农业生产碰撞,正将中国的农业带向4.0时代。农业4.0从2015年开始备受关注,这一年11月,《农村深化改革实施方案》公布,明确提出到2020年农业科技创新体系更加健全的目标。
农业部课题组曾对六省1072农户数据进行调研分析,结果表明,信息化对农户农业经营收入有重要影响。查询农业信息的农户比不查询信息的农户家庭农业经营收入要提高45.8%;使用过农业信息技术的农户比未使用的农户收入高14.3%。
这些数据仅仅是针对分散农户做的信息技术调查。对于规模化生产者运用大数据科技手段后增收额的变化,官方尚没有相关的数据,但这一改变生产方式的手段,对于农业增收的影响可想而知。
政府层面推动的现代农业4.0项目的代表是北京市大兴区的500亩西红柿,其中一个重要温室大棚根据需要自动调整光线,西红柿需要快速生长时光线是直射的,而需要慢慢生长时则调整到斜射的角度。由于物联网技术的运用,这些西红柿的生长可以实现全程可追溯。
专业的农业公司所面对的生产规模远非500亩。仅仅东方集团的子公司东方粮仓在黑龙江省五常市就有13000亩优质水稻田。
孙明涛告诉经济观察报:“与佳格合作,就是要把科技引入农业,提高农业产量,降本增效,提升产业化水平;同时,双方共同探索出一套成功的模式,激发行业内更多创新力,共同促进农业产业升级。”
虽然与自带话题的BAT等传统互联网公司相比,大数据公司显得有些低调,但却在悄无声息中消融行业边界。佳格就是这样,作为一家通过卫星和气象大数据服务于农业、环境、金融等行业的大数据应用公司,佳格已经开始将前沿互联网大数据融入到传统农业中来。从技术本身来看,这家公司也是中国第一家将目标智能识别技术和机器学习技术应用于高分辨率遥感影像领域、并率先实现商业化应用的公司。
对于未来的发展,张弓告诉经济观察报,佳格首先是从农业相关领域切入,做好农业种植板块,得到种植经验积累之后再逐渐向上下游推进。佳格不仅是农业大数据,更是以空间数据为核心。佳格在基础技术平台上最主要的应用除了农业,还有金融、生态环保,并以这几个应用为核心逐步拓展其他相关行业。

㈣ 农业农村大数据的重要性体现在哪些方面数字农业的意义是什么

数字农业是农业现代化的普及化,是自主创新促进农牧业互联网建设发展趋势的合理方式,也是在我国由农业大国迈进农牧业大国的必由之路。在这里过程中,仅有积极融入时尚潮流,提高智能化生产效率,才可以加速农牧业智能化发展趋势脚步,促进农牧业高质量发展。

物联网的运用,可以使信息管理系统的数据信息由人力收集、键入,变成感应器收集、即时传输到系统软件,那样可以立即获取信息,及其提升信息的精确性,防止人为性不正确。物联网在现代化农业生产制造设备和机器设备行业中的运用极大地提高了现代化农业生产制造设备和机器设备的数据和自动化水准,真正完成全部农牧业生产过程的信息化操纵和智能化系统企业生产管理。


智能农业是可以摆脱传统农业落后面貌的新型农业发展趋势方式,是构建在工作经验实体模型基本上的权威专家决策支持系统。智能农业注重智能化系统的决策支持系统,配之以技术专业的硬件设施。智能农业的决策模型和系统软件可以在智慧农业和农业大数据行业获得广泛运用。智能农业借助于现代科技为现代化农业给予一整套解决方法,同时可以依照某区块链的进步必须开展分拆。

㈤ 农业大数据有什么作用

农业大数据可以提高农民的产量,同时也能给农民带来巨大的经济效益。作用很大的,提到农业大数据,那必须得给你介绍孟山都,这个公司一直在这方面做的很好。

㈥ 何为农业大数据如何利用大数据

农民在实际的生产过程中每天都要做很多选择:播什么种、施什么肥、如何管理农田、病虫害如何防治等等。实际上,一套农事任务,从生产规划、种植前准备、种植期管理,到采收、销售等每一步都会极大的影响农民的生产和收益,而且它们大多数环环相扣,如果选错一步,那后果可能就是减产。所谓的农业大数据即与农民实际生产操作相对应的所有数据,从“天时、地利、人和”三方面理解:“天时”可以指实时的气象数据,降水、温度、风力、湿度等;“地利”可以指动静态的土壤数据,如土壤水分、土壤温度,作物品种信息、作物病虫害信息等;“人和”则是从人力资源给出信息,农资产品使用、农产品加工和流通渠道、农产品市场价格等等。
如何利用农业大数据?
目前,农业生产模式正在从机械化向信息化转变,以精准为特征的农业,正在让种植变得更加容易。在我国从传统农业迈向现代农业的关键时期,如何利用农业大数据呢?
首先,我们不妨先看看世界最发达的农业大国-美国,是如何利用农业大数据的?在美国,一些种业巨头公司已经意识到,面对大数据时代的来临,传统行业模式也亟待转型。如美国农用机械制造商John Deere在所有的拖拉机上都安装了传感器,将机械状况及土壤和农作物的生长情况传到MyJohnDeere.com和Farmsight服务。农户可以订阅分析结果,了解诸如何时订购备件、何时播种之类的信息。
另一位美国种业巨头杜邦先锋公司依托其优质种质资源与研发技术,也已先行结合农业大数据推进精准农业技术。其种子部门与农场机械制造商约翰迪尔联手,给农民提供种子和化肥方面的指导。目前,无论是迪尔(Deer)公司的FramSight、孟山都(Monsanto)公司的ClimatePro或Field Scripts、先锋(Pioneer)公司的Field360,都已经是广泛使用的农业大数据系统,这些系统都与气候云(Climate Cloud)相结合,整合农民机械化农场设备的种植和产量数据,以及气象、种植区划等多样数据,可以得到较为详尽的种植决策,精准化农事生产,帮助农民提高产量和利润。

㈦ 农业大数据能为农民做什么应该如何应用

农业大数据平台就是利用气候及土壤大数据,提供农户最佳化的栽种管理决策,协助农民有效管理其农地,并让农民从每一颗种子中提取最高的价值;
简单来说,农夫可以透过移动装置快速进行数据分析,并借此分析结果优化资源及提高效益。除Climate FieldView平台外,MySmartFarm、FarmLogs等也都是大数据在农业应用中的实例。
农业大数据运用将会是解决未来人类对粮食需求的解药,透过物联网及云端运算之应用,农业大数据下的精准农业,预期将能减少农业对环境生态的负面影响,并透过所建立的模型进行预测,提出最适的解决方案,一方面提高粮食的产量,另一方面则减少生产资源的错置与浪费,进而在未来有效地回应人类对粮食的需求。

㈧ 人工智能 大数据 如何作用在农业发展

原标题:2019年中国农业产业市场分析:传统三大发展痛点,三大技术助力向数字农业转型升级

数字农业应运而生 前景如何?

在数字经济快速发展的背景下,“数字农业”应运而生。我们应该怎样理解 “数字农业”?我国数字农业前景如何?数字农业又能如何助推传统农业转型升级?

2019年3月中国农产品进出口金额统计分析

在进口金额方面,数据显示,2018年2-4季度中国农产品进口金额逐渐下降,2019年3月中国农产品进口金额为10595.8百万美元,同比下降0.1%。

在出口金额方面,2018年1-4季度中国农产品出口金额呈增长趋势,其中,2018年2季度中国农产品出口金额增幅最大,相比1季度增长11.45%。2019年3月中国农产品出口金额为16482.3百万美元,同比增长12.3%。

我国传统农业发展痛点分析

1、需求侧——日益增长的农产品需求与国内传统的农业生产矛盾凸显,对外依存度高。随着收入增加,消费者将从满足基本的生存需求向品质更高的生活方式进行转换,进而摄入更多的肉类、蛋奶类制品以满足能量需要,对粮食等农产品的需求量逐步提高。不仅如此,随着我国居民收入的持续提升,居民对于高品质的农产品的需求也在持续提升,我国农产品生产的矛盾也逐渐将由总量的供给不足转变为产品结构不匹配。

2、供给侧——小规模分散经营,生产成本高,盈利能力弱。我国农业总产值虽常年居于世界首位,但由于长期存在的家庭联产承包责任制下的分散经营以及高度分散的种植、养殖现状,导致农业技术水平低,无论是机械化水平还是在生化技术水平,均落后于发达国家。同时,我国农业产业化程度较低,价值链短,附加值低,导致农业盈利薄弱,人均农业增加值远低于发达国家。

3、服务侧——融资困难、非标准化、信息不对称。融资环节复杂,成本高,时效性差。“三农”贷款难问题突出,民间借贷现象加大农村金融风险。农业的标准化生产和销售体系尚未建立。农产品生产技术和流程标准不完善,农产品标准化的销售体系不健全,品牌意识普遍不高。链条冗余、信息不对称导致销售难度加大、生产端附加值低。农产品从生产到消费交易链条过长,交易成本、运输成本较高,交易的不确定性增大、损耗也较高。

数字技术如何助力传统农业转型升级?

针对传统农业面临的以上问题,物联网、大数据、人工智能将会有效助力传统农业向数字农业转型升级。

1、物联网——农业数据实时获取,奠定农业数字化基础。物联网在农业领域应用范围广泛,基于物联网的农业解决方案,通过实时收集并分析现场数据及部署指挥机制的方式,达到提升运营效率、扩大收益、降低损耗的目的。可变速率、精准农业、智能灌溉、智能温室等多种基于物联网的应用将推动农业流程改进。物联网科技可用于解决农业领域特有问题,打造基于物联网的智慧农场,实现作物质量和产量双丰收。

2、大数据——决策“数字化”,全面提升生产效率。万物互联在推动海量设备接入的同时,也将在云端生成海量数据。而挖掘这些由物联网产生的大数据中隐藏信息的方法就是利用人工智能。物联网最核心的商业价值就是将这些海量的数据进行智能化的分析、处理,从而生成基于不同商业模式的各类应用。

3、人工智能——潜力巨大,激活农业高效发展。在种植领域,人工智能有望提高粮食产量、减少资源浪费。在养殖领域中,利用人工智能可以有效降低疾病造成的损失。人工智能缩短农业研发进程。在实验室和研究中心,机器学习算法能够帮助培育更好的植物基因,创造更安全、更高效的农作物保护产品和化肥,并且开发更多的农产品。

说到数字技术助推农业发展,就不得不提到以色列。以色列天然水资源短缺、降水稀少,有三分之二的地区被定义为半干旱或干旱地区。资源匮乏迫使国家聚力提高农业效率,为挖掘大数据潜力刺激数字农业发展。

近年来,以色列越来越多的农业领域正通过热像仪、传感器、无人机、卫星图像等技术监测使得实时数据及时传达给农民,大幅提高了农民相应速度,最大限度地减少了极端天气条件下的农业损害、最大限度地提高农业产量。经过农业现代化进程,截至2016年,以色列实现了从新中国成立初期80%粮食靠进口到可以生产满足自身95%需求的转变。

更多数据请参考于前瞻产业研究院发布的《中国农业产业化市场前瞻与投资战略规划分析报告》。

阅读全文

与农业生产大数据怎么用相关的资料

热点内容
什么技术能带回家 浏览:520
专利中多个技术点什么意思 浏览:314
宽带数据掉了怎么修 浏览:620
贵港水果批发市场在哪里 浏览:614
气温高温差大是可以养什么水产品 浏览:802
正大饲料黑河代理是哪里 浏览:642
excel如何输入规律数据 浏览:961
如何落实产品一致性检查 浏览:987
民房交易在什么地方办理 浏览:368
程序后面加点什么意思 浏览:346
小程序每日交作业怎么批改 浏览:99
交易成功结束是什么意思 浏览:652
poss机的代理怎么做 浏览:139
如何看懂交易所的k线图 浏览:320
朋友送的减肥产品怎么样 浏览:986
微信查社保的小程序是什么 浏览:810
政府名下房产交易有哪些规定 浏览:742
台风信息怎么查 浏览:686
记账代理哪个品牌好 浏览:75
程序员的手速怎么练出来的 浏览:660