Ⅰ 大数据的四V特征指什么
①数量(Volume),即数据巨大,从TB级别跃升到PB级别;
②多样性(Variety),即数据类型繁多,不仅包括传统的格式化数据,还包括来自互联网的网络日志、视频、图片、地理位置等;
③速度(Velocity),即处理速度快;在数据处理速度方面,有一个着名的“1秒定律”,即要有秒级时间范围内给出分析结果,超出这个时间,数据就失去价值了。
④真实性(Veracity),即追求高质量的数据。数据的重要性就在于对决策的支持,数据的规模并不能决定其能否为决策提供帮助,数据的真实性和质量才是获得真知和思路最重要的因素,是制定成功决策最坚实的基础。
Ⅱ 大数据的4v特点具体指的是什么
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据技术的战略意义不在于掌握庞大的数据信息。
而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
(2)大数据4v和五v是什么意思扩展阅读:
大数据的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
Ⅲ 大数据4v是指哪四个
大数据的4V,就是“容量大Volume”“多样性Variety”“价值低Value”“速度快Velocity”
现在已经有5V了
一、Volume:数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
三、Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
四、Velocity:数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显着特征。
五、Veracity:数据的准确性和可信赖度,即数据的质量。
Ⅳ 大数据特征中的4v是什么
大数据的特征,由维克托迈尔-舍恩伯格和肯尼斯克耶编写的《大数据时代》中提出,大数据的4V特征:规模性(Volume)、高速性(Velocity)、多样性(Variety)、价值性(Value)。
(1)规模性
随着信息化技术的高速发展,数据开始爆发性增长。大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。
(2)多样性
多样性主要体现在数据来源多、数据类型多和数据之间关联性强这三个方面。
①数据来源多,企业所面对的传统数据主要是交易数据,而互联网和物联网的发展,带来了诸如社交网站、传感器等多种来源的数据。
而由于数据来源于不同的应用系统和不同的设备,决定了大数据形式的多样性。大体可以分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。
②数据类型多,并且以非结构化数据为主。传统的企业中,数据都是以表格的形式保存。而大数据中有70%-85%的数据是如图片、音频、视频、网络日志、链接信息等非结构化和半结构化的数据。
③数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。
(3)高速性
这是大数据区分于传统数据挖掘最显着的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
(4)价值性
尽管企业拥有大量数据,但是发挥价值的仅是其中非常小的部分。大数据背后潜藏的价值巨大。由于大数据中有价值的数据所占比例很小,而大数据真正的价值体现在从大量不相关的各种类型的数据中。挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,并运用于农业、金融、医疗等各个领域,以期创造更大的价值。
Ⅳ “四个V”界定大数据概念
“四个V”界定大数据概念
大数据是一个新的概念,网友从各个领域看到过很多关于大数据概念的描述和界定,我们也很想知道从《纲要》的角度上来看,如何了解大数据的概念和内涵。
这个问题提的非常好,现在我个人认为大数据近几年无论从应用、从技术、从产业都发展的非常快,而且成为我们全社会一个非常瞩目的热词。但是从客观上来看,无论是学术界、产业界还是政府界,还是普通老百姓,对大数据这个词,BigData这个词汇是缺乏一个统一的共识的。我们可以看到很多大数据的概念和界定的描述,比如说维基网络对大数据的定义,是用我们现有的技术手段无法在期望时间内进行处理的数据的集合。然后在学术界大家非常熟悉的关于大数据的界定就是4个V,四个英文的第一个字母的描述,第一个V就是volume,是大量的。大数据的量很大,某一个程度上达到PB级才是大数据,但是有时候几百T也是大数据。
第二个V(variety)是类型,现在随着互联网的发展,很多类型不再是我们传统意义上处理的结构化数据,有时候是半结构化,甚至是非结构化,原有的信息技术很难处理的技术。
第三个V(velocity)是速度,就是大数据的处理速度要很快,在很快、很及时的时间内,从大量的数据中来非常及时的获得到我想要的数据和信息。比如说这个数据半个月以后分析出来好了,但是对我已经没有用了,时间已经过去了。在公共安全的领域甚至治安的领域,利用数据分析是很现实的一个应用。
第四个是value,大家知道,实际上value表示的是价值密度低,它是一个“废品利用”、“沙里淘金”、“大海捞鱼”的过程。从国家发改委牵头从一两年之前开始研究,会同工信部等部门来做相关行动纲要的研究和起草。从国家信息化发展大的角度来说,行动纲要的大数据的角度来看,我们学习大数据有一个共识,这样才对它的战略、内容会有更好的理解。
以上是小编为大家分享的关于“四个V”界定大数据概念的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅵ 大数据4v特征指的是什么
大数据的4v特征分别是Volume(大量性)、Velocity(高速性)、Variety(多样性)、Value(价值性)。大数据特征的概念由维克托迈尔·舍恩伯格和肯尼斯克耶编写的《大数据时代》中提出。
截至目前,人类生产的所有印刷材料的数量是200PB,而历史上全人类总共说过得话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
Velocity(高速性):这是大数据区于传统数据挖掘的最显着特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
Variety(多样性):这种典型的多样性也让数据呗分为结构化数据和非结构化数据。相对于以往便储存的以数据库或文本为主的结构变化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等。这些多类型的数据对数据的处理能力提出了更高要求。
Value(价值性):价值密度的高低与数据总量的大小成反比。如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。
Ⅶ 如何理解大数据的4V
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。
Ⅷ 大数据4v是什么意思
1、大数据4v是指Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据具有海量性、多样性、高速性、易变性的特征。
2、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;种类(Variety):数据类型的多样性;速度(Velocity):指获得数据的速度;可变性(Variability):妨碍了处理和有效地管理数据的过程。大数据三大特征
3、第一个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等多类型的数据对数据的处理能力提出了更高的要求。第二个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。第三个特征是处理速度快、时效性要求高。这是大数据区分于传统数据挖掘最显着的特征。
更多关于大数据4v是什么意思,进入:https://www.abcgonglue.com/ask/6a18a31616096532.html?zd查看更多内容
Ⅸ 大数据可以概括为5个v,包括以下哪些
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、Value(价值)、真实性(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据分析也应运而生