A. 所谓大数据一般是指多大的数据量
其实首先你要区分大数据和大数据量的概念。大数据量只是一个纯粹的数据量级的问题,而现在大家所谈论的大数据主要包括搜索、新闻、博客、微博等社交网、移动电话和短信、热线电话和监控数据、通测数据等等。这些数据大多数为我们日常社交生活或是语音通信时产生。通常为TB级别,非结构化数据。而TB级别的数据用excel或者其他数据分析工具是很难展现处理的,这时就需要BI工具来应对大数据。FineBI针对大数据有专门的大数据量解决方案,可以去它的官网看看,就不附链接了
B. 电商数据分析指标都有哪些该如何进行分析
此文是对最近学习的电商相关知识点做一个巩固
传统零售利用二八法则生存,电商靠长尾理论积累销售。
传统零售是小数据,电商是大数据。
传统零售是“物流”,零售过程就是商品的流动;电商是“信息流”,顾客通过搜索、比较、评论、分享产生信息,达到购买的目的。
传统零售注重体验感,电商注重服务和效率。
传统零售是做加法,电商是做乘法。传统零售是通过一家家店扩大影响力,电商通过资金的投入迅速抢占市场。
传统零售的主要成本是房租和人工成本,电商的主要成本是物流和营销成本。
总结:电商和传统零售虽有千万种差别,但总归都是零售,融合是二者注定的趋势,即现在火热的新零售。
传统零售的数据主要是进销存数据、顾客数据和消费数据。电商的数据却复杂得多,数据来源渠道也很多样化
电商数据来源广泛,常规的流量数据、交易数据、会员数据在品牌的交易平台都有提供。一些第三方网站也提供数据源及分析功能。
1、网络统计:包括流量相关的网站统计、推广统计、移动统计三部分内容。分析内容包括趋势分析、来源分析、页面分析、访客分析、定制分析和优化分析。
2、谷歌分析:包括流量分析工具、内容分析、社交分析、移动分析、转化分析、广告分析几部分内容。
3、Crazy egg热力图:主要特色是对页面热点追踪分析的热力图。
4、CNZZ数据专家(友盟):包括站长统计、全景统计、手机客户端、云推荐、广告管家、广告效果分析和数据中心等。
还有一些无需埋点监测数据的产品,如GrowingIO、神策数据、诸葛io等。
以下为用思维导图进行梳理的电商数据分析指标,总共包括六大类
对访问你网站的访客进行分析,基于这些数据指标可以网页进行改进
这里需要注意两个点
1)影响因素不同:UV 价值更受流量质量的影响;而客单价更受卖的货的影响;
2)使用场景不同:UV 价值可以用来评估页面 / 模块的创造价值的潜力;客单价可以用来比较品类和商品特征,但一个页面客单价高,并不代表它创造价值的能力强,只能得出这个页面的品类更趋近于是卖高价格品类的。
如果网站是为了帮助客户尽快完成他们的任务(比如:购买,答疑解惑),那么在线时长应当是越短越好;如果希望客户一同参与到网站的互动中来,那么时间越久会越好。所以,分析在线时长是否越长越好,要根据产品定位来具体分析
从注册到成交整个过程的数据,帮助提升商品转化率。
对于一个新电商来说,积累数据,找准营运方向比卖多少货,赚多少钱更重要。这个阶段主要 关注流量指标 ,指标如下:
对于已经经营一段时间的电商,通过数据分析 提高店铺销量 就是首要任务。此阶段的重点指标是 流量和销售指标 ,指标如下:
对于已经有规模的电商,利用数据分析 提升整体营运水平 就很关键。重点指标如下:
数据指标分为追踪指标、分析指标和营运指标,营运指标就是绩效考核指标。一个团队的销售额首先是追踪出来的,其次是分析出来的,最后才是绩效考核出来的。销售追踪自然是按天、按时段说话,分析一般是以周和月为单位,绩效考核常常是以月为主、以年为辅。
执行人员侧重过程指标,管理层侧重结果指标。对于数据分分析人员来说要学会根据职位提供不同的数据。
1、无流量不电商,对于流量分析,我们常用漏斗图来做分析,几乎每个流量的细分都可以用到漏斗图。
2、漏斗图就是一个细分和溯源的过程,通过不同的层次分解从而找到转化的逻辑。
3、漏斗图的弱点,就是反应一条转化路径的形态,我们可以稍加修改实现漏斗图的对比功能。
1、流量的质量分为质和量两方面,只有质没有量的流量是没有多少实际价值的,流量的质体现在不同的营销目的上,例如获得点击、注册、收藏、购买或者获取利润的目的。
2、可以通过四象限分析图来对比分析流量的质量。下图是针对购买的转化率和流量的四象限图,其中第一象限的流量应该是高质量的,流量和转化率均高于平均值;第二象限渠道的流量转化率高,但量不大,通过搜索来的流量大部分属于此类;第四象限流量属于质低量高,站外购买的流量这种情况比较多;第三象限属于质低量低的双低流量,不用特别维护,任其发展即可。
3、图中的Y轴可以根据具体的分析目的替换成点击率、注册率、收藏率、ROI(单元产出)等进行对比分析。
四象限分析图中,X轴、Y轴、分析对象都可以根据不同的目的进行替换。
4、散点图的四象限分析可以结合趋势,或者演变成四象限气泡图,气泡图的大小为ROI,这种四象限图信息量更大。
1、电商的销售针对比传统零售复杂很多,主要复杂在流量的多层次多渠道上,互联网的好处是几乎能将用户的每个动作记录下来,然后我们从中找到关键点进行诊断即可。下图,是一个类似杜邦分析的图,从值(图中红色)和率(图中蓝色)两个方面,订单、新客、老客三个维度将销售额拆成五个层次,每个层次间具有加或乘的逻辑关系。
2、销售额是一个结果指标,图中的20个指标是过程指标,每个指标的变化都会影响最终的销售额,基本都是正相关。(折扣和销售额的关联会稍微复杂一些)
3、通过上图,使用对比、细分的原则分析可以判断出哪儿些指标变化对销售额产生了影响。
参考书籍为《数据化管理——洞悉零售及电子商务运营》
C. 多大的数据才算“大数据”
什么是大数据?
列举三个常用的大数据定义:
(1)具有较强决策、洞察和流程优化能力的海量、高增长、多样化的信息资产需要新的处理模式。
——Gartner
(2)海量数据量、快速数据流和动态数据速度、多样的数据类型和巨大的数据价值。
—— IDC
(3)或者是海量数据、海量数据、大数据,是指所涉及的数据太大,无法在合理的时间内被截取、管理、处理、整理成人类可以解读的信息。
—— Wiki
大数据的其他定义也差不多,可以用几个关键词来定义大数据。
首先是“大尺度”,可以从两个维度来衡量,一是从时间序列中积累大量数据,二是对数据进行深度提炼。
其次,“多样化”可以是不同的数据格式,比如文字、图片、视频等。,可以是不同的数据类别,如人口数据、经济数据等。,也可以有不同的数据源,如互联网和传感器等。
第三,“动态”。数据是不断变化的,它可以随着时间迅速增加大量的数据,也可以是在空间不断移动变化的数据。
这三个关键词定义了大数据的形象。
但是,需要一个关键能力,就是“处理速度快”。如果有这样的大规模、多样化、动态的数据,但是需要很长时间的处理和分析,那就不叫大数据。从另一个角度来说,要实现这些数据的快速处理,肯定没有办法手工实现,所以需要借助机器来实现。
D. 大数据公司的数据体量大概是多少
在线广告投放公司,一天的请求量一般在亿级
网络,淘宝,这种规模一天的访问量也是十亿级
网络为全网做的网站统计,挂了他js的每个网站的点击都能收集到,更不得了,估计千亿级别。
E. “大数据” 到底有多大
在很多人的眼里大数据可能是一个很模糊的概念,但是,在日常生活中大数据有离我们很近,我们无时无刻不再享受着大数据所给我们带来的便利,个性化,人性化。全面的了解大数据我们应该从四个方面简单了解。定义,结构特点,我们身边有哪些大数据,大数据带来了什么,这四个方面了解。
那么“大数据”到底是什么呢?
在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB ,1PB=1024GB才足以称为大数据。
如图:
衡量单位一览表
其次,大数据具有什么样的特点和结构呢?
大数据从整体上看分为四个特点,
第一,大量。
衡量单位PB级别,存储内容多。
第二,高速。
大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。
第二,多样。
数据的来源是各种渠道上获取的,有文本数据,图片数据,视频数据等。因此数据是多种多样的。
第三,价值。
大数据不仅仅拥有本身的信息价值,还拥有商业价值。大数据在结构上还分为:结构化,半结构化,非结构化。结构化简单来讲是数据库,是由二维表来逻辑表达和实现的数据。非结构化即数据结构不规则或不完整,没有预定义的数据模型。由人类产生的数据大部分是非结构化数据。
F. 电商大数据是什么
电商大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
G. 大数据的大量指的是至少要有多大数据量A100K字节B100字节C100M字节D100T字节8
大数据的大量指的是至少要有 100T 字节。
在计算机领域中,数据量的单位通常使用字节(Byte)来表示。常用的数据量单位有 K、M、G、T 等。其中,K 表示千,M 表示百万,G 表示十亿,T 表示万亿。因此,100K 字节表示 100 * 1000 = 10^5 个字节,100M 字节表示 100 * 1000 * 1000 = 10^8 个字节,100T 字节表示 100 * 1000 * 1000 * 1000 = 10^12 个字节。
可以看出,100T 字节是一个很大的数据量,至少要有这么大的数据量,才能称之为大数据。
希望这对你有帮助!
H. 大数据时代,我国数据量究竟有多大
从2013年初开始,对于大数据爆发的焦虑感,紧迫感,不由自主地被卷入的甚至无力的感觉,驱动众多行业、企业和团体去关注和开始接触和了解大 数据,自觉或不自觉的,主动或不得已地去融入这波洪流。但是,真的说到大数据,我们中国到底有多少数据量,它们都分布在哪些行业,哪些数据是目 前可用的,哪些行业已经在使用数据,进入产业互联网和数据引导的变革了?
可能看到的版图依旧模糊。因此,我们怀抱很好的希望,以第一个吃螃蟹并期待来自行业的矫正和拍砖的态度,首先尝试对于国内各个领域,行业以 及机构的数据拥有情况,使用情况以及未来路径做一个粗犷地调研、梳理和判断,对大数据时代我国各个领域数据资产的拥有和使用情况,也就是我们数 据资产的家底做个盘点,也对各个行业、系统进军大数据,以及拥抱产业互联网的进度和未来做个简单判断。事实上,大数据之题无疑繁若星辰,然而只 有在相对完整的视图下,繁星若尘,我们才可得以一窥天机。
从我们手头掌握的数据来看,2013年度,中国存储市场出货容量超过1个EB(1EB=多少),存储总量而IDC曾经发布的预测表明在未来的3-4年,中国存储总 容量可能达到18个EB。从数据存储市场的需求来看,互联网、医疗健康、通信、公共安全以及军工等行业的需求是主要的,且上升态势明显。
鉴于存储和服务器的紧密相关,我们从已经获得的资料可以知道,目前全球运行的服务器总量超过5000万台,美国国内运行的服务器总体容量接近 1000万台。从各种市场公开数据来看,2013年中国内地服务器销售总数接近为100万台。大体估算,截止到2013年底,中国内地整体在运行的服务器总数 量在300万台以上。
从现有存储容量看,中国目前可存储数据容量大约在8EB-10EB左右,现有的可以保存下来的数据容量大约在5EB左右,且每两年左右会翻上一倍。这些 被存储数据的大体分布为:媒体/互联网占据现有容量的1/3,政府部门/电信企业占据1/3,其他的金融、教育、制造、服务业各部分占据剩余1/3数据量 。
公开数据显示,互联网搜索巨头网络2013年拥有数据量接近EB级别、阿里、腾讯声明自己存储的数据总量都达到了百PB以上。此外,电信、医疗、金 融、公共安全、交通、气象等各个方面保存的数据量也都达到数十或者上百PB级别。
在目前被广泛引用的IDC和EMC联合发布的“2020年的数字宇宙”报告 预测到2020年,全球数字宇宙将会膨胀到40ZB,均摊每个人身上是5200GB以上,这个量将会如何被有效存储和应用,我们眼下还很难想象。然而我们 看到该报告指出,从现在起到2020年,全球数字宇宙的膨胀率大约为每两年翻一番。事实上,根据上述调查结论和服务器容量调查,我们也能做出个相对 合理的推断:目前,全球产生的数据量中仅有1%左右的数据能够被保存下来,也就是说今天全球能够被保存下来的数据也就是在50EB左右,而其中被标记 并用于分析的数据更是不到10%。
作为全球人口和计算设备保有量的大国,我国每年所能产生的数据量也极为庞大,有数据说2014年甚至可能达到ZB级别,但是真正被有效存储下来的 数据仅仅是其中极微少部分,中国保存下来数据占全球数据的比例大约在10%左右,也就是上面说的5EB。这些数据中,目前已被标记并用于分析的数据仅 达到500PB左右,也是接近10%的一个比例。
伴随着云计算迅速普及和各行业,各企业和部门对于数据资产保存和利用意识的增强,以及通过互联网、大数据对产业进行变革的意愿,未来2-3年一 定会有越来越多的行业、大企业步入到PB、百PB、甚至EB级别数据俱乐部,未来3-3年中国的数据总量也将呈翻倍上升态势,我们预测2015年中国就可能 突破10EB数据保有量,被标签和分析利用数据量也将上升到EB级别,这些数据增长中互联网、政务、医疗、教育、安全等行业和领域所做贡献最大,而相 对传统的物流、生产制造、甚至农业等领域数据拥有量的增长将更加明显。