1. 样本容量需要多大才能最大限度地满足调查要求
在95%的置信度下,允许误差5%,样本容量需要400才能最大限度地满足调查要求。
样本容量又称“样本数”。指一个样本的必要抽样单位数目。在组织抽样调查时,抽样误差的大小直接影响样本指标代表性的大小,而必要的样本单位数目是保证抽样误差不超过某一给定范围的重要因素之一。因此,在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。
样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
在假设检验里样本容量越大越好。但实际上不可能无穷大,就像你研究中国人的身高不可能把所有中国人的身高都量一量一样。
样本容量问题
回归分析是从已经发生的经济活动的样本数据中寻找经济活动中内含的规律性,它对样本数据具有很强的依赖性。样本的容量太小会导致参数估计值的大小和符号违反经济理论和实际经验。从建模需要来讲,样本容量越大越好,但收集与整理样本数据是一件困难的工作,因此,选择合适的样本容量,既能满足模型估计的需要,又能减轻收集数据的困难,是一个重要的实际问题。
(1) 最小样本容量
所谓“最小样本容量”,即从普通最小二乘法原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限,它是:n≥k+1
其中,k为解释变量的数目。
(2) 满足基本要求的样本容量
一般经验认为,当n≥30或者至少n≥3(k+1)时,才能满足模型估计的基本要求。
2. 900人从18个班中每班随机抽取5名学生调研,此次抽查的样本容量是什么
900人从18个班中每班随机抽取5名学生调研,此次抽查的样本容量是90。
3. 一组数据的样本容量是50,若其中一个数出现的频率为0.5
∵频数为50,频率为0.5,
∴抽查样本的样本容量=50÷0.5=100.
故选A.
4. 为分析六个班300名学生的成绩,学校决定在六个班,每个班随机抽十份试卷。这个问题中样本容量是多少
每个班抽十份,六个班共需抽60份,所以样本容量为60,关于数据的收集和整理中的总体是要调查对象的全体,该题中的总体是300名学生的成绩,样本是抽查的60名学生的成绩,抽查釆用的是随机抽查,每班十份,全面,具有代表性。
5. 抽查50个同学的试卷,样本容量是多少
样本容量是:50×30=1500.
故选:D.
6. 在抽样调查中,样本容量是什么
样本容量是对于你研究的总体而言的,是总体的一些抽样.比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的样本.样本的数量就是样本容量. 在假设检验里样本容量越大越好.但实际上不可能无穷大,就像你研究中国人的身高不可能把所有中国人的身高都量一量一样.7. 样本容量怎么算
掌握总体、个体、样本,样本容量的概念,能正确区分总体、个体、样本、样本容量
总体、个体、样本、样本容量,这四个概念之间其实有其内在联系,
总体是指考察的对象的全体,
个体是总体中的每一个考察的对象,
样本是总体中所抽取的一部分个体,
而样本容量则是指样本中个体的数目。
我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量。
8. 如何确定样本量
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。
根据样本量计算公式,不难知道,样本量的大小不取决于总体的多少,而取决于:
(1) 研究对象的变化程度;
(2) 所要求或允许的误差大小(即精度要求);
(3) 要求推断的置信程度。
样本量n=C²σ²/p²
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。
精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
合理确定样本容量的意义:
1.样本容量过大,会增加调查工作量,造成人力、物力、财力、时间的浪费;
2.样本容量过小,则样本对总体缺乏足够的代表性,从而难以保证推算结果的精确度和可靠性;
3.样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
9. 样本容量如何计算
样本量的计算公式为:N=Z²*σ²/d²,其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。
样本量大小是选择检验统计量的一个要素,由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
样本容量的大小与推断:
估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
样本的内容是带着单位的,例如:调查某中学300名中学生的视力情况中,样本是300名中学生的视力情况,而样本容量则为300。
样本容量的大小涉及到调研中所要包括的单元数,样本容量是对于研究的总体而言的,是在抽样调查中总体的一些抽样,比如:中国人的身高值为一个总体,随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本,某一个样本中的个体的数量就是样本容量。