❶ 全国行政执法数据信息平台是做什么的,包括哪些内容
行政执法数据
这里的行政是指(除立法、检察、司法以外政府部门的工作)
执法数据是指:执法人员依法办事的过程,细节、相关负责人、罚单……一切可公开的档案资料。
公开出来就是信息喽,官方网站就是信息平台。
行政执法数据信息包括:交通、工商、治安、金融、税务、民政……
相当于公开政府执法部门的业绩,主要作用还是解决民众的疑问,涉及战略不可能公开,要不然就便宜国外的情报机构了。
❷ 大数据平台提供的最基本的两个功能是什么
最基本的两个功能是:一数据收集;二数据分析归纳。
扩展:
一、它必须容纳海量数据
如果大数据分析平台无法扩展以存储或管理海量数据,那么仅仅提高速度所带来的作用相当有限。大数据分析平台必须能够容纳海量数据。
大规模并行处理是用于扩展分析处理的理想技术,因为它同时利用计算机群集的存储和计算能力。它不仅在性能上有所扩展,而且其处理传入的大量数据流的能力也相应提高。
此外,被设计为用于处理结构化数据的大数据平台使用MPP,可进一步加速处理操作,这是因为已针对分析程序优化了结构化数据,并减少了回答查询所需执行的搜索量。结构化数据库能够更好地了解数据在数据海洋中的位置,并且可以精确地存取数据。
一般来说,非结构化数据库难以扩展到采用列式设计的结构化数据库所能达到的级别。但是,大数据分析平台可能整合有能够提高非结构化数据库的可扩展性和性能的功能。
二、它必须非常快
简单来说,数字时代下,用户不希望在运行查询时长时间地等待结果。他们期望即时得到满足,获得即时结果,而对其他工作负载没有影响。这意味着大数据分析平台必须增强现有应用程序的性能,允许您开发具有挑战性的新分析方法,并提供合理、可预测和经济的横向扩展策略。
从技术角度来看,要满足这些期望,必须结合列式数据库架构(相对于基于行的非并行处理传统数据库)和使用大规模并行处理技术或者说MPP。
理由在于:列式设计可最大限度地减少I/O争用,后者是导致分析处理发生延迟的主要原因。列式设计还可提供极高的压缩率,相比于行式数据库,通常可将压缩率提高四倍或五倍。MPP数据仓库通常按比例线性扩展,这意味着如果您将双节点MPP仓库的空间翻倍,那么可有效将其性能提高一倍。
列式设计和MPP的结合不仅能够大幅提高性能(通常约100到1000倍),还可以实现更低且更透明的定价机制,例如针对每TB的模型而非传统的针对每处理器、每节点、每用户的定价方案。最终结果:性能呈指数级增长,同时大数据分析处理过程的总成本大幅降低。
三、它必须兼容传统工具
如果您的大数据分析平台依赖于“提取、转换、加载”(ETL)工具(如Attunity、Informatica、Syncsort、Talend或Pentaho)或基于SQL的可视化工具(如Logi
Analytics、Looker、MicroStrategy、Qlik、Tableau和Talena),请确保该平台已经过认证,可与所有这些工具而不仅仅是主要供应商的工具搭配使用。此外,确保您使用的所有工具和扩展技术符合最新版本的ANSI
SQL标准(SQL2011)。
四、它必须为数据科学家提供支持
数据科学家在企业IT中拥有着更高的影响力和重要性,因此大数据分析平台应在下述两个关键方面支持数据科学家。首先,新一代数据科学家采用Java、Python和R等工具来执行预测式分析。底层分析数据库应支持和加速创新型预测分析的创建过程。
其次,此平台应有助于将数据科学家的工作与业务目标联系起来。如今,数据科学家的角色常常从统计学家演变而来,后者相对而言更具学术意味,而且通常并不熟悉宏观业务目标。在某些情况下,会导致数据科学家得出的结论可能不完整、不准确或与业务成果无关。同时,商业人士常常乐于让统计学家在封闭的环境中工作,只在需要他们支招时才去找他们。
快速、高效、易于使用和广泛部署的大数据分析平台可以帮助拉近商业人士和技术专家之间的距离。
五、它应提供高级分析功能
根据您的特定使用情况,可能有必要深入查看由大数据分析引擎提供的内置SQL分析功能。您必须从底层查看,以了解究竟提供了何种SQL分析,而不用对该数据执行分析。例如,如果要对从设备获得的数据执行分析(如在物联网中),则需要诸如“时间序列分析”和“差距分析”等分析功能。如果没有这些功能,您可能需要花费时间整理数据或编写自定义代码。
❸ 大数据分析平台/数据服务平台有那些
南京西桥科技有限公司的Cobub,大数据精准营销一站式解决方案,靠谱的大数据服务商!
❹ 大数据服务平台是什么有什么用
现今社会每时每刻都在产生数据,企业内部的经营交易信息、物联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,我们身边处处都有大数据。而大数据服务平台则是一个集数据接入、数据处理、数据存储、查询检索、分析挖掘等、应用接口等为一体的平台,然后通过在线的方式来提供数据资源、数据能力等来驱动业务发展的服务,国外如Amazon ,Oracle,IBM,Microsoft...国内如华为,商理事等公司都是该服务的践行者。
❺ 如何实施政府大数据平台
随着信息技术的飞速发展,各领域的数据量都在爆发式增长,尤其在云计算、物联网、移动互联网等it技术得到广泛应用之后,数据的增长实现了从量变到质变的转型,大数据如浪潮般席卷而来,人类社会进入大数据时代。大数据不仅仅只是一次颠覆性的技术革命,更是一场思维方式、行为模式与治理理念的全方位变革,尤其在政府治理领域,大数据带来了巨大的变革潜力和创新空间。在“全面深化改革,推进国家治理体系和治理能力现代化”的时代背景下,应充分重视大数据在政府治理中的重要价值,牢牢抓住大数据为政府治理提供的创新机遇,切实提高各级政府部门的治理能力。
一、大数据为政府治理理念转型带来新机遇
治理理念的转型是提升政府治理能力的前提,理念的转型需要新文化、新思维的融入,大数据所蕴含的数据文化与数据思维恰好可以为治理理念转型提供突破口,基于大数据探索政府治理的多元、多层、多角度特征,最终实现以政府为主体的政府管制理念向以协同共治、公共服务为导向的政府治理理念的转型。在大数据时代,政府治理的依据不再是个人经验和长官意志,而是实实在在的数据,在过去深入群众、实地调研考察的基础上,系统采集的客观数据和实证分析的科学结果将成为最为重要的政府决策依据。“尊重事实、推崇理性、强调精确”的特征和“用数据说话、用数据决策、用数据管理、用数据创新”的理念将成为政府治理理念转型的核心要义。
二、大数据为政府治理模式创新带来新机遇
大数据通过把数学算法运用于海量数据,从数据中寻找相关关系,通过这种相关性预测事情发生的可能性,这是大数据方法论的核心思想。此外,依托于大数据技术和平台,通过外包、众包等灵活的组织方式,可以推动政府治理的组织架构从科层、分割、封闭向开放、协同、合作转型,因此把大数据的方法和手段引入到政府治理领域,是实现政府治理模式创新的有效路径。基于上述方法论,大数据为政府治理模式创新带来的新机遇主要包括:从粗放式管理到精细化治理、从单兵作战型管理到协作共享型治理、从被动响应型管理到主动预见型治理、从电子政务管理到政府2.0治理、从风险隐蔽型管理到风险防范型治理,最终实现全面数据驱动的治理模式创新。
三、大数据为政府决策科学化带来新机遇
随着公共事务的日益复杂,仅凭个人感知已经很难全面了解所有正在发生的事情并做出正确判断,政府部门想要提高决策的科学性,就需要把大数据思维与技术运用到政府治理与决策中,依靠大规模数据的收集来直观呈现经济社会运行规律,通过相应的数据挖掘来辅助政府部门进行科学决策。大数据为政府决策科学化带来的机遇主要体现在两个方面:首先,在决策的制定阶段,大数据背景下,政府决策不再是个别领导干部“拍脑袋”做出的,而是通过“用数据说话”,让听得见炮火的人(数据)做出决策,这样的政府决策是在对客观数据进行科学分析、充分了解客观现实的基础上做出的,这样大大提高了决策的精准性、适用性和科学化水平;其次,在决策实施效果的跟踪反馈阶段,通过物联网和社交网络的普及,大量的客观数据能够快速汇集给决策者,通过这些数据对决策的实施过程和效果进行实时监控,能够更全面地掌握决策的实施效果和下一步的改进方向。
四、大数据为政府服务效能提升带来新机遇
提升政府服务效能是政府治理能力提升的重要支撑,也是大数据背景下服务型政府建设的关键所在,在政府治理的范畴下,提升政府服务效能主要包括政府部门行政审批的效率提升和公共服务产品的质量提高两个方面。在提升行政审批效率方面,大数据可以打通各个政府部门的信息孤岛,打破各部门数据的条块分割,通过构建统一的政府行政审批云平台,让数据为老百姓“跑腿办事”,省去了“跑断腿、磨破嘴,办事跑十几个部门,盖几十个公章”的苦恼和无奈,这样既提高了行政审批效率,又节约了政府开支。在提高公共服务产品质量方面,大数据通过对公共服务产品数据和服务对象数据的挖掘、分析,提升公共服务产品供给的精准化、分层化、个性化;通过公共数据的开放和兼容,让公众参与到公共服务产品设计、提供和监督等各个环节,实现公共服务产品质量的提高。
❻ 大数据都能应用在哪些方面
1、政务治理方面;
包含舆情监测、风险发现,风险防范、风险判断、应急指挥、精准调研、议题引导、引导效果评估、决策辅助等。
2、企业品牌管理方面;
包含品牌口碑管理、品牌传播管理、品牌战略管理(竞争力评估、行业环境评估等)
3、媒体传播方面;
包含追踪热点、编辑选题、数据新闻等
4、科研教学方面;
包含学校师生研究课题、教学案例等
新媒体大数据已运用到工作生活的方方面面,政企单位如有新媒体大数据需求,可免费咨询新浪舆情通,新媒体大数据服务平台,打造场景化大数据应用。
❼ 大数据分析平台有哪些作用
一、数据驱动事务
经过数据产品、数据发掘模型实现企业产品和运营的智能化,然后极大的进步企业的全体效能产出。最常见的应用领域有根据个性化推荐技术的精准营销服务、广告服务、根据模型算法的风控反诈骗服务征信服务等。
二、数据对外变现
经过对数据进行精心的包装,对外供给数据服务,然后取得现金收入。市面上比较常见有各大数据公司利用自己把握的大数据,供给风控查询、验证、反诈骗服务,供给导客、导流、精准营销服务,供给数据开放渠道服务等。
三、数据辅助决议计划
为企业供给根底的数据计算报表分析服务。分析师能够容易获取数据产出分析报告指导产品和运营,产品司理能够经过计算数据完善产品功用和改进用户体验,运营人员能够经过数据发现运营问题并确定运营的策略和方向,管理层能够经过数据把握公司事务运营情况,然后进行一些战略决议计划。
关于大数据分析平台有哪些作用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。