❶ 数据层融合,特征层融合,决策层融合中哪一种融合更精确
数据融合更精确。
从表现形式上,地学数据可分为以下几类:①地质、物探、化探等测量数据;②地形图、地质图、遥感图等图形、图像数据;③各种经验性、描述性数据。鉴于目前的研究现状,我们认为地学数据融
合的关键问题如下:①空间遥感数据与地面测量数据的融合;②各地面测量数据之间的融合;③不同空间测量手段获取的数据间的融合;④定量数据与经验性、知识性数据的融合
①一般的地学数据整合模式是:
1、数据包括传感器收集数据的直接数据和专家经验知识和描述性文字等间接数据;
2、首先是初级滤波,主要是对各种数据源的、有不同量级、不同量纲、不同表现形式的数据作第一次规整;
3、然后是一级处理是对各种数据集的操作,包括校对、识别、相关分析、数据或变量的综合等,形成的结果有的可直接进入到数据管理系统供用户使用,有的进入到二级处理;
4、二级处理是对目标的评估,即根据前面的操作,协同利用各数据源对目标进行识别和评估,并尽可能给出评估的精度,最后将结果送至数据管理系统。
5、最后利用GIS的空间数据管理能力,将结果转换为空间图层的方式,可极大地方便用户的使用和对空间分析功能的支持。
②遥感图像处理中的数据融合
1、“融合”这一术语在遥感图像的处理中已不是新名词了。它主要是对不同传感器、不同波段、不
同时相的影像进行融合处理,处理的目的多是为提高图像光谱分辨率和空间分辨率。
2、应用图像处理方法时,首先对原始图像进行严格的配准是非常必要的。目前基于图像处理的数据融合主要有以下3个方面:①基于像元的融合(来自两个不同特性的影像的加权融合);②基于特征的融合(是在①的基础上加入特征的提取与分离);③基于判决水平的融合(高层次的决策融合,通常是面向特定应用的融合)。
③VGE中的数据融合
1、VGE即虚拟地理环境,它是一种综合应用各种技术制造逼真的人工模拟环境,并能有效地模拟人在自然环境中的各种感知系统行为的高级的人机交互技术。为了达到对现实世界的真实模拟必然需要用到大量的地理数据,其中3维数据的应用尤为重要!
2、由于获取的数据,包含有不同的领域,不同的格式,所以需要设计统一的数据接口,这个可以通过FME实现。
3、由于部分领域数据可能不具有明确的地理坐标,所以还需要根据其地理参考信息做出一系列的配准,投影转换等操作。
4、建立统一的空间数据库,对数据加以统一组织,存储与管理。
5、最后就是多源数据的可视化与交互,这个涉及到具体的计算机技术就不做展开了。
❷ 数据融合技术有什么用途
数据融合技术为先进的作战管理和C[3]I系统提供了重要的数据处理技术基础。数据融合在多信息源、多平台和多用户系统内起着重要的处理和协调作用,保证了数据处理系统各单元与汇集中心间的连通性与及时通信
【海量信息】专注于大数据实践20年,提供数字化转型顶层设计、数据中台(内置用户画像核心引擎),业务中台建设、数据获取、治理、分析服务,是您值得信赖的企业数字化转型专业服务商。
网页链接
❸ 分布式融合体系的特点
您好,分布式融合体系的特点:
1、分布性。分布式系统由多台计算机组成,它们在地域上是分散的,可以散布在一个单位、一个城市、一个国家,甚至全球范围内。整个系统的功能是分散在各个节点上实现的,因而分布式系统具有数据处理的分布性。
2、自治性。分布式系统中的各个节点都包含自己的处理机和内存,各自具有独立的处理数据的功能。通常,彼此在地位上是平等的,无主次之分,既能自治地进行工作,又能利用共享的通信线路来传送信息,协调任务处理。
3、并行性。一个大的任务可以划分为若干个子任务,分别在不同的主机上执行。
❹ 数据融合具有哪些显着特点,简述信息抽象的三个层次
邓小平关于社会主义本质的概括,具有以下几个方面的显着特点:
(1)在目标层次上揭示社会主义的本质。党的十一届三中全会以后,邓小平以实践作为检验真理的标准,在改革的实践中检验原有的认识,不是抽象地谈论社会主义的原则,而是把社会主义要达到的实际目标放在首位来谈论社会主义。在谈到如何建设社会主义时,邓小平从社会主义建设的目的和目标角度,提出了"三个有利于"的标准,在谈到什么是社会主义时,邓小平从社会主义的目标层次上揭示社会主义的本质。邓小平关于社会主义本质论断的五句话即是五个目标,具体又可以分成两个大目标,即解放生产力、发展生产力是生产力方面的目标,消灭剥削、消除两极分化,最终达到共同富裕是人民利益方面的目标,或者说是价值目标。邓小平认为社会主义的优越性归根到底体现在这两方面目标的实现上。
(2)突出生产力的基础地位。过去我们脱离生产力抽象地谈论社会主义,现在,邓小平对社会主义本质的概括则突出了生产力的基础地位,即解放生产力和发展生产力。这既是对过去社会主义建设历史经验的总结,也是为进一步改革开放开辟道路。根据我国国情和时代的特征,讲社会主义的本质尤其需要突出生产力的首要基础地位。我国正处在社会主义初级阶段,又面临着新技术革命挑战,讲社会主义不能不突出生产力基础地位。
(3)突出社会主义的价值目标。消灭剥削、消除两极分化,最终达到共同富裕,是社会主义的价值目标,也是社会主义和资本主义的本质区别,也就是说,只有社会主义才能做到。在所有制上以公有制为主体,在分配上以按劳分配为主体,为实现共同富裕提供了基本条件。发展生产力的目标和实现共同富裕的目标是互为条件的。(4)在动态中描述社会主义的本质。邓小平在谈到社会主义本质时,没有把它限定在僵死的定义中,而是用了五个动词:"解放"、"发展"、"消灭"、"消除"、"达到",在动态中生动地描述了社会主义的本质。社会主义是一个过程,社会主义的本质也有一个逐步实现的过程。
❺ “数据融合”总结1
融合标准 :以融合数据与数据真实值的偏差作为数据融合方法的稳定性判定依据。
所提方法 :加权最小二乘法在数据融合
常用的融合方法有:
加权最小二乘法融合
对于数据线性模型基于加权最小二乘法融合算法为:
所提方法 :基于多维特征融合(几何特征、颜色特征和纹理特征)与 Adaboost-SVM 强分类器的车辆目标识别算法。
仅提取了大量特征,文中直接说对构建多维特征向量。
首先用光流法提取步态周期,获得一个周期的步态能量图(GEI);然后分三层提取 GEI的 LBP特征,得到三层的 LBP图像;依次提取每层LBP图像的HOG特征,最后将每层提取的LBP和HOG特征融合(串联拼接),得到每层的新特征最后将三个新特征依次融合成可以用于识别的最终特征。
提出一个FLANN结构进行特征融合,functional link artificial neural networks。FLANN是一个单层非线性网络,输入X_k是n维向量,输出y_k是一个标量,训练数据集为{X_k, y_k},偏置集合T用来增强网络的非线性能力,这些函数值的线性组合可以用它的矩阵形式表示S=WT, Y=tanh(S)。FLANN和MLP的主要区别是FLANN只有输入和输出层,中间的隐藏层完全被非线性映射代替,事实上,MLP中隐藏层的任务由Functional expansions来执行。
三种Functional expansions :
提出了三种融合策略:早期融合、中期融合和晚期融合。早期融合也就是特征级融合,决策级融合也就是晚期融合。
特征级融合 :
直接将不同方法提取的特征进行串联。
多核学习(Multiple kernel learning, MKL) :
参考自文献。MKL由巴赫创立。核学习算法在多类问题的分类任务中表现出良好的性能。为了将内核学习算法应用于特征组合,每个单独的内核与每个特征链接在一起。因此,特征组合问题就变成了核组合问题。在支持向量机中,采用单核函数,而在MKL中,利用核的求和或积定义了不同核的线性组合。
提出一种新颖的系统,它利用训练好的卷积神经网络(CNN)的多阶段特征,并精确地将这些特征与一系列手工特征相结合。手工提取的特征包括三个子集:
所提出的系统采用一种新颖的决策级特征融合方法对ECG进行分类,分别利用了三种融合方法:
在多数表决的基础上,将三种不同分类器的个体决策融合在一起,并对输入的心电信号分类做出统一的决策。
通过对图像进行对偶树复小波变换(DTCWT)和快速傅里叶变换(FFT)提取特征,将二者通过 算数加法(arithmetic addition) 融合为一个特征集合。
DTCWAT特征 :对图像进行5层小波分解得到384个小波系数
FFT特征 :采用傅里叶变换生成图像的绝对系数,然后排序后取前384个作为fft特征
算数加法特征融合 :
本文提出了一种快速的特征融合方法将深度学习方法和传统特征方法相结合。
浅层网络结构 :
每个特性的重要性应根据应用程序和需求的不同而有所不同。因此,为了实现动态权值分配,我们提出了多特征融合模型。
使用Curvelet变换进行特征提取,因为它有效地从包含大量C2曲线的图像中提取特征。Curvelet Transform具有很强的方向性,能更好地逼近和稀疏表达平滑区域和边缘部分。
我们应用了基于包装的离散Curvelet变换,使用了一个实现快速离散Curvelet变换的工具箱Curvelab-2.1.2。在实验中使用了默认的方向和5层离散Curvelet分解。
使用标准差进行降维
串联融合方法
在本文中,提出了一种深度多特征融合方法(Deep multiple feature fusion,DMFF)对高光谱图像进行分类。
基于gcForest的思想,提出了DMFF方法。
gcForest
gcForest模型主要包含两个部分:
DMFF
DMFF去掉了Multigrained Scanning,缺失了多样性输入,因为采用多特征来进行弥补。随即森林都是同一种类型。
❻ 数据融合技术的用途
随着系统的复杂性日益提高,依靠单个传感器对物理量进行监测显然限制颇多。因此在故障诊断系统中使用多传感器技术行多种特征量的监测(如振动、温度、压力、流量等),并对这些传感器的信息进行融合,以提高故障定位的准确性和可靠性。此外,人工的观测也是故障诊断的重要信息源.但是.这一信息来源往往由于不便量化或不够精确而被人们所忽略。信息融合技术的出现为解决这些问题提供了有力的工具.为故障诊断的发展和应用开辟了广阔的前景。通过信息融合将多个传感器检测的信息与人工观测事实进行科学、合理的综合处理.可以提高状态监测和故障诊断智能化程度。
信息融合是利用计算机技术将来自多个传感器或多源的观测信息进行分析、综合处理.从而得出决策和估计任务所需的信息的处理过程。另一种说法是信息融合就是数据融合.但其内涵更广泛、更确切、更合理,也更具有概括性.不仅包括数据,而且包括了信号和知识,由于习惯上的原因,很多文献仍使用数据融合。信息融合的基本原理是:充分利用传感器资源.通过对各种传感器及人工观测信息的合理支配与使用.将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则或算法组合来,产生对观测对象的一致性解释和描述。其目标是基于各传感器检测信息分解人工观测信息.通过对信息的优化组合来导出更多的有效信息。
复杂工业过程控制是数据融合应用的一个重要领域。通过时间序列分析、频率分析、小波分析,从传感器获取的信号模式中提取出特征数据,同时,将所提取的特征数据输入神经网络模式识别器,神经网络模式识别器进行特征级数据融合,以识别出系统的特征数据,并输入到模糊专家系统进行决策级融合。专家系统推理时,从知识库和数据库中取出领域规则和参数,与特征数据进行匹配(融合)。最后,决策出被测系统的运行状态、设备工作状况和故障
❼ 多源遥感影像数据融合的主要优点是什么呢
像素级:保留较多的信息,较高的准确度;特征级:实现了可观的信息压缩,有利于实时;决策级:具有很强的容错性,很好的开放性等
❽ 多传感器数据融合技术的定义
传感器数据融合的定义可以概括为把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层融合、特征层融合、决策层融合。
(1)数据级融合。针对传感器采集的数据,依赖于传感器类型,进行同类数据的融合。 数据级的融合要处理的数据都是在相同类别的传感器下采集,所以数据融合不能处理异构 数据。
(2)特征级融合。特征级融合,指的是提取所采集数据包含的特征向量,用来体现所 监测物理量的属性,这是面向监测对象特征的融合。如在图像数据的融合中,可以采用边 沿的特征信息,来代替全部数据信息。
(3)决策级融合。决策级融合,指的是根据特征级融合所得到的数据特征,进行 一定的判别、分类,以及简单的逻辑运算,根据应用需求进行较高级的决策,是高级的融合。决策级融合是面向应用的融合。比如在森林火灾的监测监控系统中,通过对于温度、湿度和风力等数据特征的融合,可以断定森林的干燥程度及发生火灾的可能性等。这样,需要发送的数据就不是温湿度的值以及风力的大小,而只是发送发生火灾的可能性及危害程度等。在传感网络的具体数据融合实现中,可以根据应用的特点来选择融合方式。
❾ 数据整合和数据融合的区别
数据整合和数据融合的区别。区别在于数据整合是相关数据,数据融合是不同数据。数据融合内涵更广泛、更确切、更合理,也更具有概括性,不仅包括数据,而且包括了信号和知识。通过对不同的数据进行分析加工处理。数据整合由多方的数据共同存在才能够实现产品价值,将相关数据集成到一个平台进行分析处理。