导航:首页 > 数据处理 > 用户多少大数据有价值

用户多少大数据有价值

发布时间:2022-02-25 05:44:11

A. 大数据的价值是什么

“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。
大数据的应用其实早已渗透到人们生活中的方方面面:亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界??当下,很多行业都开始增加对大数据的需求。大数据时代不仅处理着海量的数据,同时也加工、传播、分享它们。不知不觉中,数据可视化已经遍布我们生活的每一个角落,毕竟普通用户往往更关心结果的展示。伴随去年底网络地图采用LBS定位春运的可视化大数据,就引起了学界对新闻创新和大数据可视化的热议。


一、技术价值

大数据,根本上与数学、统计学、计算机学、数据学等基本理论知识无法分割,技术水平突飞猛进给数字领域带来最直接的跃进。

App研发应用、数据库编写应用等促进人类社会技术进步的价值都来源于大数据的发明和运营。

大数据不仅创造了新的计算方式、技术处理方式,更加为其他技术的研发、应用和落地提供基础,例如人工智能等。

大数据中客户与企业进行交易的数据,是大数据技术价值的核心映射。客户的交易行为通过企业内部系统留存,基本以“事后”数据为主。

交易数据是推进企业数据驱动业务,与客户联系沟通、获得有效和分析数据的初级门槛,无论大数据获取能力如何发展,直接的交易信息永远都是第一有效和值得关注的。

淘宝的交易分析报告中提到,大额买单后的重购次单和同店重购次单比例分别为25.0%和16.8%,要明显高于普通买单的18.8%和10.7%,则表示在首次买单获取了对卖家服务和商品质量的信任后,次单完全存在放大金额的可能,并且比普通买单的可能要高得多。

由此引导卖家增进服务、坚守质量,并适时推出捆绑推荐,以求同类商品同店大额下单的几率。

只有有了大数据的处理技术,交易行为才能够得到记录分析,企业的大数据技术研发、应用和落地才能拥有基础,以开发更新更适合时代的企业产业。

目前有很多传统企业盲目行走大数据的道路,但其实大数据技术能力并没有建立起来,真正获得了有效数据并得以分析利用的就很少,很多该做的“埋点”没有做,数据的统计也缺乏技术支撑。

这时大数据的技术价值就会显得尤为重要,且是所有价值的基础,一梁塌,全屋倒。

无法自主革新的企业会求助一些以提供大数据服务为产品的新型公司,也就催生了各种大数据公司雨后春笋般的出现,至于这些公司如何为传统转型服务在后面会提到。

二、商业价值

在实际的升级运行中,习惯于传统经营的企业也许经常会为这样几个基础的问题感到困惑:如何提升运营现状?目标客群是谁?有哪些特点?与竞品相比竞争优势在哪?现有经营问题又是什么?

而这些看似简单的问题背后却隐藏着海量数据的分析挖掘:客流数据、经营数据、以往活动相关数据、场内店铺信息、竞品数据,类此种种的深入透析才能帮助企业画像潜客、分析经营、建立会员体系、策划活动执行。

单就运营而论,数据作为一种度量方式,能够真实的反映运营状况,帮助企业进一步了解产品、了解用户、了解渠道进而优化运营策略。

B. 顾客大数据最核心的价值是什么

开宗明义,顾客大数据最核心的价值毫无疑问是精准营销了。
精准营销是大数据落地应用的一个重要场景,在细分市场下可快速获取潜在用户并提高市场转化率,堪称“获客神器”。它的本质是根据用户在不同阶段的身份属性,结合用户特征和偏好,进行不同目的针对性营销活动,具体包括潜在客户挖掘、价值客户转化、存量客户互动和流失客户挽留等。其中,潜客挖掘(新课营销)和客户挽留(老客营销)是精准营销的重中之重。
是的,商机大家都看到了,但怎么掌握顾客大数据,怎么做精准营销,目前市场上还没有完全的定论。线上数据的话,基本被BAT垄断了,普通企业想插手的话难度很大,数据都没有,想做独立做线上营销更难了;线下数据比线上的量更大些,暂未被垄断,但又太分散太零散了,除了星巴克麦当劳这种大企业有能力收集之外,一般店铺难以建立自己的大数据平台,更不用谈大数据的智能化处理了。
在这方面,目前就我所知,有一家专门服务线下店铺市场的智慧店铺企业做得比较不错,名叫掌贝。这是家店铺Marketing Tech智能营销公司,它依托融合业务入口所沉淀的店铺大数据,帮助商户搭建自己的顾客大数据平台,实现自动化的精准营销,从而带动老客回流、新客引流。可谓是正好切中线下顾客大数据市场的要害啦,实现了精准营销的场景话操作,有兴趣的人可以去了解下。

C. 大数据最核心的价值是什么

大数据的核心价值在于规律的总结,通过大数据得出规律,从而预测未来。

目前很多大数据的项目做的是通过大数据分析用户的行为习惯和喜好,这是大数据的价值,但是这只是一部分。

大数据其他方面比如:AlphaGo是通过下棋的数据来给出它对每一个棋子将来怎么下的一个判断方法。还有无人驾驶技术,这也是通过大数据,训练出一个会开车的技术产品。淘宝有定位基准的广告,这种广告是根据用户的历史行为数据推送。

再向上思考一个层面,通过大数据的分析可以得到一定的规律。

比如:地球的轨道是需要通过大量的观测来得出一个结论,所有规律性的事物都是可以从数据中找到它的规律。有时候,有很多规律是没法用特别简化的公式来表达,那可能就出现比如人工智能、神经网络这样的算法。

这种规律是通过模型训练得到,虽然没法用特别简洁的公式来表达内在规律,但它的核心其实也是一个公式,也是一个规律。包括数据投递、广告投放,对于用户过去的行为数据做一些分析,会认为同样的行为大概率会发生同样的事情,这也是一些规律,而数据的核心在于它能得到一些背后的规律。

有规律就可以对未来的很多事情有判断作用。

D. 如何利用大数据最大化用户价值

如今,大数据已经成为企业的重要资产,评价一家企业是否运营良好的标准,不再局限在利润、现金流以及商业模式,还将加入一个重要的指标——是否拥有足够好的数据以及处理数据的能力。

那么,如何确保企业能够收集到正确的数据,同时可以最大限度地利用已经处理好的数据呢?

第一、考虑一个更为宽泛概念的指标

我们从很多指标中都可以看到组织内部正在发生的未来趋势。然而,更为常见的情况是,组织花费了很多时间和金钱在过于深入研究一个问题上,而这样的深入并无必要。设想一下:你真的需要把问题的测量标准精确到小数点后五位吗?抑或是只要一个更为概括性的指标就已足够?这样一种更为宽泛指标的好处是,它不会试图去解释你的组织内部存在着什么问题。

第二、数据要能更快地被接收到

更为真实的情况是,相比精确的程度,当数据能够更快地被接收到时,它对于你将更具价值。所以,即使是在同一家组织内部,你对于不同数据的速度的需求也可能不同。而问题在于,数据抵达的速度需要快于你的组织正在面临的压力和风险。

第三、 领导力应与公司战略保持一致

我们需要建立最重要事情的方法,并且根据我们的表现作出相应的评价。例如,想象一下,你的战略核心在于进入新的市场以获得业绩的增长。当你审视这些措施的表现时,比如:新市场地区的销售量或者你在已有市场地区以外吸引到的新客户的数量。这些数据都应该比在另一策略下采取的措施更有价值。然而,对一家有多个店址的企业来说,这将是一项挑战,因为你可能有一家新设立的营业单位正在进入市场,同时,另一家营业单位却已经在这个市场中经营很久,那么,它们就会争取顾客份额。所以,即使在同一家企业内部,你也需要制定不同的策略。当领导层检查数据时,你应该有一个“视觉触发器”,这样他们就可以知道,什么时候应该“过界”,从“市场渗透战略”转向“顾客份额”战略。

第四、 明确如何使用已有数据

你应该总是能够在组织内部找到一些这样的数据:它们可以告诉你一个项目进程情况,包括“投入—转换—产出”各个阶段的情况。

E. 大数据的真正价值

大数据的价值:
a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;
b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等

c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有个大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等

但在实践中,我更加喜欢把数据的价值分为两个方面,一个方面是给企业创造营收,另一个方面就是给企业节省成本。

F. 如何让“大数据”有价值

如何让“大数据”有价值

大数据并不仅仅是“大”,但它首先得“Bigger”,拥有足够量级的数据才能被称作大数据,所以你看到仅仅分析几百人的数据就说自己是大数据的公司基本上都是骗子。另外,足够的数据,不能进行价值转化也没用。
吃饭、睡觉、旅行、走路、购物,所有纯物理性的行为都成为可被记录数据的组成部分,这些看似与我们的生活、工作、赚钱等无关的行为,正成为新时期的价值瑰宝,谷歌、亚马逊、Facebook、网络、阿里巴巴等均陷在其中而不能自拔。
近期,腾讯、搜房、浪潮集团、易观等纷纷与统计局签署了大数据战略合作框架协议,再加上去年签署的11家公司,越来越多的互联网公司、传统企业数据正被纳入新构建的大数据“基地”当中。
不少人对大数据的概念有很大误解,甚至有不少公司搭上“大数据”的概念来玩资本运作。大数据并不仅仅是“大”,但它首先得“Bigger”,拥有足够量级的数据才能被称作大数据,所以你看到仅仅分析几百人的数据就说自己是大数据的公司基本上都是骗子。我不认为当前有多少公司量级的数据能够是“Bigger”的。对于用户级市场,至少该产品的用户量达到亿级,达到该产业用户量的前几名;对于企业级市场,也至少得拥有足够量级的企业用户,才算得上拥有大数据的基础,再加上用户使用各个产品的习惯大不相同,所以当前的大数据绝对是缺憾的,抽样数据并不准确不是么?多谈无益,故本文纯从数据来分析。
数据的记录
数字产品的出现,迅速让用户的个人信息能够被记录,电脑、智能手机、可穿戴设备、智能硬件、未来的智能电视等正成为数据记录的新工具,其中较为热门的是围绕医疗需求来建立相关的数据记录,睡眠、血压、体重等产品较多,虽然这些产品的用户量并不“多”,但是硬件厂商们依然乐此不彼的做着这一切。
要想让数据能够真正的发挥作用,首先这些数据肯定得被记录,必须有了记录才会有相关的模型分析,否则都是纸上谈兵。比如用户的睡眠时间、用户的出行时间、用户每天所摄入食物的卡路里、用户吃饭的消费金额等等,所有出现的物理性数据,只有被记录了这些数据才会有价值,没有记录,这些都是“废物”,没人会重视这些物理性动作的价值。
数据如何才能被记录?(作者微信公众号:郭静的互联网圈)首先得有工具,拿医疗为例,我们在医院看病,医生会使用相关仪器记录用户的心跳周期;我们去餐厅吃饭,餐厅会记录每桌顾客的消费记录以及用户最爱点的菜品;我们在网上使用搜索引擎,搜索引擎会记录用户的搜索习惯。医疗器械、ERP系统、电脑等成为了数据记录的工具。
数据被记录是用户被动选择的结果,如果用户不去医院检查,那么数据就不会被记录,用户去了B餐厅而不是A餐厅消费,A餐厅也无法获取到用户的喜爱。所以,可穿戴设备、智能硬件等都试图让用户能够主动将自身的数据被记录,应该说这也是UGC模式的一种,用户自愿将自身的数据提供到平台上去,供平台进行分析。
被动和主动的区别是非常大的,被动就意味着有用户的数据会流失掉,当流失掉的这部分用户足够多以后,新的数据模型就无法完成。记录是数据的基础,接下来就是连接。
数据和用户的连接
用户不可能一直在某个餐厅消费,也不可能一直在某一个地方睡眠,至于可穿戴设备,用户也很难做到每天都按时去佩戴,让自身的数据可以记录。单个用户某一行为被不同商家记录,而这些商家记录的数据是分离的、独立的,无法形成连贯性,当这些被记录的数据到了一定时间滞后,肯定是面临被丢弃的命运。让数据能够同平台的相互连接,要比单个“独霸”有用的多。
另一方面,就是数据和用户的连接,如何让用户的数据能够被主动贡献出来,并通过互联网、移动互联网相互连接,形成数字存储而不是纸质记录,这是当前围绕数据进行创业者的思考。
跨界连接是最困难的,就像拼图一样,如何通过混乱的形体组合,形成有效的画面。比如餐饮和超市购物、搜索和社交、电商和社交等,这些数据得形成有效的连接,单一的从搜索行为就分析出用户的购物行为或者其他行为是有失偏颇的,搜索的需求太单一,并不能是用户整个的行为特征,只有综合用户搜索、购物、社交等多个使用行为,才能有效的分析出用户的某个行为特征。
有效的价值转化
从记录→连接→价值转化,这肯定是一个漫长的过程,要知道先祖们用了数千年的时间也仅将少量的数据形成转化并遗传下来。互联网、移动互联网在国内的发展还不足20年,而数据从被重视到被记录到被连接,就更是一个漫长的过程,目前市场上的智能手环、智能手表、无线路由器、盒子等产品虽然都不尽人意,但是其无一不在让数据变的有效的道路上奋斗着。
将用户的搜索数据记录并有效价值转化最早的案例是谷歌当年预测流感病毒,当然,已有不少互联网公司都有将用户数据记录、连接并实现有效的价值转化。互联网公司离数字存储最近,占据着有利条件,能够更敏锐也是正常。
不过,仅仅有互联网的数据是不完全的,用户在线下的数据,用户在生活中的数据,在更多不使用互联网的情况是使用的数据,我把它称之为物理数据,这部分数据是现实生活当中的数据,其价值要高于互联网络上的数据的,互联网公司们正在吸收着这些数据。
数据的有效转化,可以体现在几个方面,一是预防,针对企业级的。应该说每个行业都有泡沫的存在,就算没有泡沫,也会有倒闭的风险,通过对相关数据的分析,可以对未知的风险起到一定的预防措施,即使不能避免,至少能更大程度上的减少损失,并能够助力公司挺过这场风暴。
一是隐性价值,针对用户级的。比如时间成本,通过地图工具和当地公交系统对接,让用户实时了解公交车的到站时间,节约用户等待公交车的时间,海量用户的时间成本加起来,肯定是一笔不菲的价值。再比如健康预防,越来越多的慢性病开始向用户渗透,通过对相关数据记录、连接,让用户能够尽早预防慢性病的发生,比如肥胖的问题(健康产品的前提是有高质量的医疗体系在背后支撑)。让所有可能有价值的数据都被记录、连接,再将这些数据分析之后,实现有效的价值转化,互联网公司、传统企业、统计机构、用户,所有人都是这场风暴的参与者。我们应该给予正在为这场大风暴做贡献的企业和创业团队,可能有人被“掉队”,也有人可能在这场风暴中崛起。

以上是小编为大家分享的关于如何让“大数据”有价值的相关内容,更多信息可以关注环球青藤分享更多干货

G. 大数据的价值体现有哪些

第一、帮助企业寻找更多的市场机会



基于用户分析的基础上,企业可以获得更好的产品和营销的创意和概念,怎么去搜集到更多的用户信息,挖掘可能有的市场机会,这是大数据帮助企业实现的最好方法。



第二、帮助企业提高决策的科学合理性



从大数据诞生的时候来讲,它都是站在企业的决策角度出发,从数据的数量到数据的本质,数据越多,管理者进行决策的时候所依据的信息完整性就会越高。



第三、帮助企业找到人员管理新模式



企业的员工是无条件的服从上级的管理,还是内部一盘散沙,企业的管理效率高不高,在竞争环境日益激烈的今天,对于企业来说,管理高不高效直接关系到企业的经营效益高不高效,大数据与企业的核心管理因素相结合,成为企业的资产之一,大数据的成果可以进行企业内部共享,对于企业来说,这是一个变革的机会。



第四、帮助企业提供更加个性化的服务



弹性管理,个性化领导,每一个员工都可以得到更加个性化的培训,每一个用户都可以得到更加个性化的服务,对于企业来说这种个性化的创新无疑要依靠大数据技术的支持和发展。



第五、帮助企业进行商业模式的改革



新型的商业模式不断的出现,对于新的市场机会的出现,大数据可以帮助企业获得更好的产品,新的业务模式也需要企业的商业模式进行支持,抓住机会,企业就可以进行更多的产品和服务的创新。

H. 大数据分析平台具有哪些价值

一、数据驱动事务


经过数据产品、数据发掘模型实现企业产品和运营的智能化,然后极大的进步企业的全体效能产出。最常见的应用领域有根据个性化推荐技术的精准营销服务、广告服务、根据模型算法的风控反诈骗服务征信服务等。


二、数据对外变现


经过对数据进行精心的包装,对外供给数据服务,然后取得现金收入。市面上比较常见有各大数据公司利用自己把握的大数据,供给风控查询、验证、反诈骗服务,供给导客、导流、精准营销服务,供给数据开放渠道服务等。


三、数据辅助决议计划


为企业供给根底的数据计算报表分析服务。分析师能够容易获取数据产出分析报告指导产品和运营,产品司理能够经过计算数据完善产品功用和改进用户体验,运营人员能够经过数据发现运营问题并确定运营的策略和方向,管理层能够经过数据把握公司事务运营情况,然后进行一些战略决议计划。


关于大数据分析平台具有哪些价值,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

I. 所有的大数据都是有价值的吗

所有的大数据都是有价值的吗
大数据不一定等同于好数据,且越来越多的专家也坚信这一点,大数据并不会自动产生好的分析结果。如果数据不完整、断章取义或者被破坏,可能会导致企业产生错误的决策,从而削弱企业的竞争力或影响用户个人日常生活。

美国哈佛大学教授、定量社会科学研究所主任——Gary King就曾因数据分析时断章取义,得出了错误的结果。他发起了一个大数据分析项目,即通过检测Twitter和其他社交媒体帖子中的“工作”、“失业”和“分类”等关键词,来预测美国的失业率。
通过使用情感分析的技术,该组织收集了包含这些关键字的tweet和其他社交媒体帖子,来查看这些帖子的增加或减少是否与每月失业率存在相关性。
在监测这些内容时,研究人员发现包含其中一个关键字(“工作”)的帖子数量急剧增加,但随后,他们发现这与失业率毫无关系,因为他们忽略了乔布斯(乔布斯的名字Jobs也有“工作”的意思)去世的消息。我们应从这个例子中吸取教训,不要完全依靠“神奇”的大数据来指导决策。
King表示,“jobs”的双重含义只是诸多类似事件之一,在这一领域工作的人都遇到过类似的经历。他说:“这些关键字列表在短期内可能可行,但从长远来看,往往会带来灾难性的失败。你可以通过添加额外的关键字来解决问题,但这需要大量的人力参与。”
你可以输入关键些到Bing Social页面,便会看到一些相关或者无关的东西。如果你不更改查询,随着时间的推移,你会发现含有这些关键词的话题正以某种方式逐渐偏离主题,有时候偏离比较小,有时候却很大。”
但King表示,总体而言,很多大数据分析都产生了有用的内容。Vantiv公司首席安全官兼高级副总裁Kim Jones表示,这不是一个新问题,但如果人们认为大量数据能够奇迹般地产生良好的分析结果,这个问题可能会变严重。他指出:“Jobs的例子是一个经典的案例,数据本身并不等同于智慧。”
King认为内容是关键。他是大数据分析公司Crimson Hexagon首席科学家兼联合创始人,用该公司市场营销执行副总裁Wayne St. Amand的话来说,该公司旨在为在线对话提供“内容、意义和结构”。
然而,越来越多没有内容的数据在推动决策过程。华尔街日报2月份曾报道,医疗保险公司使用大数据来为其用户创建个人资料文件。该公司追踪的信息之一是购买加大号衣服的历史记录,这可能会导致将转诊转为减肥的计划。
没有人会觉得鼓励人们更健康地生活是错误的事情,但是这方面涉及的隐私问题却令人不安。这个人购买加大号衣服可能是送给另一位家庭成员。而且这种隐私问题可能带来更严重的影响。《彭博商业周刊》在2008年曾报道过有人因购买处方药的历史记录,而被保险公司拒绝为其上医疗保险,而这个人买药的历史记录暴露这个人有轻微的心理健康问题。
Adam Frank在博客中指出,在某些情况下,银行会因为用户在社交网站LinkedIn或者Facebook上的联系人的情况而拒绝用户的贷款。如果你的朋友赖账,你的信誉可能也会受到他们的信誉的影响。ACLU高级政策分析师Jay Stanley指出,“信用卡公司有时会因为其他消费者的信贷历史记录而降低消费者的限额。”
Kim Jones表示,从相关性得出结论,而不进行进一步分析,这给他本人也带来过麻烦。“在80年代后期和90年代初期,有数据显示,驾驶入门级豪华车,且年龄在20和27岁之间的西班牙裔和黑人男性最有可能是毒贩。而我正好符合这个标准,我是非裔美国人,年龄也在这个范围内,当时我开的正式这样的车,但我并不是毒贩。”
他表示,“我们不能只是依靠数据分析,那样可能会导致一些坏的结果。如果你忽略人类的分析因素,那么你的错误率将会非常高。”
简言之,大数据是一个工具,但不应该被视为解决方案。“它可以帮助你缩小范围,从数百万可能缩小到150左右,”Jones表示,“但是我们不能让计算机做一切判断,因为这最终可能会给你带来麻烦。”

阅读全文

与用户多少大数据有价值相关的资料

热点内容
如何找到隐藏起来的程序 浏览:886
陕西资质化工材料产品怎么样 浏览:722
为什么跨境产品上新失败 浏览:740
如何看待数据开放与安全 浏览:46
趣头条信息流如何投放 浏览:747
交易卡被限制交易怎么回事 浏览:982
商水狗猫市场在哪个位置 浏览:522
电脑微信小程序游戏怎么放大 浏览:560
ct三维重建技术是哪里的 浏览:931
小区底商怎么代理快递 浏览:715
什么产品可以无限复制系统 浏览:541
受权代理书什么写 浏览:160
全球多少芯片使用蔡司技术制造 浏览:821
什么节点负责数据的存储 浏览:675
广西扫码抗疫情小程序如何更换个人信息 浏览:111
如何把iphone的程序同步到ipad中 浏览:50
程序员出差住宿怎么办 浏览:531
怎么查网红的直播数据 浏览:75
收缩毛孔去角质产品有哪些 浏览:418
如何把微信小程序的照片保存 浏览:737