❶ 大数据分析应该掌握哪些基础知识呢
前言,学大数据要先换电脑:
保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。
1,语言要求
java刚入门的时候要求javase。
scala是学习spark要用的基本使用即可。
后期深入要求:
java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。
2,操作系统要求
linux 基本的shell脚本的使用。
crontab的使用,最多。
cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。
scp,ssh,hosts的配置使用。
telnet,ping等网络排查命令的使用
3,sql基本使用
sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。
sql统计,排序,join,group等,然后就是sql语句调优,表设计等。
4,大数据基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。
5,maprece及相关框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件输入格式,map数目,rece数目,调优等。
6,hive和hbase等仓库
hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。
hbase看浪尖hbase系列文章。hive后期更新。
7,消息队列的使用
kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。
8,实时处理系统
storm和spark Streaming
9,spark core和sparksql
spark用于离线分析的两个重要功能。
10,最终方向决策
a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)
b),数据分析。(算法精通)
c),平台开发。(源码精通)
自学还是培训?
无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。
有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,
想办法跟大牛做朋友才是王道。
❷ 大数据分析需要哪些知识
数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。
❸ 学大数据需要具备什么基础
说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。
❹ 大数据专业的应该必备哪些专业技能
大数据专业的必备专业技能:
1、熟练使用统计分析工具例如SQL, excel, SPSS, SAS, R, python等等;
2、掌握常用的数据分析方法,例如数据预处理,单变量描述性统计,多元统计分析如回归,聚类等;
3、良好的数据敏感度,能从海量数据提炼核心结果,有丰富的数据分析、挖掘、清洗和建模的经验;
4、有成本优化效能提升数据分析经验,尤其是供应链相关的优先。
大数据简介:
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
❺ 大数据分析应该掌握哪些基础知识
大数据分析师应该要学的知识有,统计概率理论基础,软件操作结合分析模型进行实际运用,数据挖掘或者数据分析方向性选择,数据分析业务应用。
1、统计概率理论基础
这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。
2、软件操作结合分析模型进行实际运用
关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
3、数据挖掘或者数据分析方向性选择
其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。
4、数据分析业务应用
这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要。(5)大数据需要哪些基本知识技能扩展阅读
分析工作内容
1、搜索引擎分析师(Search Engine Optimization Strategy Analyst,简称SEO分析师)是一项新兴信息技术职业,主要关注搜索引擎动态,修建网站,拓展网络营销渠道,网站内部优化,流量数据分析,策划外链执行方案,负责竞价推广。
2、SEO分析师需要精通商业搜索引擎相关知识与市场运作。通过编程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立网站进行各种以用户体验为主同时带给公司盈利但可能失败的项目尝试。
❻ 大数据需要学习哪些内容
当前大数据的知识体系还是比较庞大的,随着大数据技术生态的逐渐成熟和完善,大数据领域也逐渐形成了更多的岗位细分,从事不同的岗位细分方向则需要学习不同的知识。比如大数据开发需要:
JavaSE基础核心
Java入门语法、面向对象核心、集合与泛型、线程机制、网络编程、流程控制结构、异常体系、反射体系、IO流、设计模式
大数据基础核心
Maven、Hadoop、Hive、Kafka、Linux、Shell、Zookeeper+HA、Flume、HBase
Spark生态体系框架
Scala语言、Spark SQL、Kylin、Druid、Sqoop、Spark Core、Presto、Spark Streaming、Redis缓存数据库、GIT & GIT Hub、ElasticSearch
❼ 学大数据需要什么基础知识和能力
1.计算机基本理论知识
了解计算机的基本原理,计算机的发展历史等计算机的基本常识和理论。
示例说明
总结:以上条件并不是一定要达到很高的标准,只要基本都熟悉,都有印象,能够简单运用即可。
❽ 大数据专业需要学习什么知识
学习要根据自身情况来定,如果你是零基础,那就必须先从基础Java开始学起(大数据支持很多开发语言,但企业用的最多的还是JAVA),接下来学习数据结构、Linux系统操作、关系型数据库,夯实基础之后,再进入大数据的学习,具体可以按照如下体系:
第一阶段
CORE JAVA (加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型,运算符、循环,算法,顺序结构程序设计,程序结构,数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常,File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述,安装Linux操作系统,图形界面操作基础,Linux字符界面基础,字符界面操作进阶,用户、组群和权限管理,文件系统管理,软件包管理与系统备份,Linux网络配置 (主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养动手能力。了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计,SQL语句,Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础,HDFS,MapRece,分布式集群,Hive,Hbase,Sqoop
,Pig,Storm实时数据处理平台,Spark平台