A. 大数据的生命周期的九个阶段
大数据的生命周期的九个阶段
企业建立大数据的生命周期应该包括这些部分:大数据组织、评估现状、制定大数据战略、数据定义、数据收集、数据分析、数据治理、持续改进。
一、大数据的组织
没有人,一切都是妄谈。大数据生命周期的第一步应该是建立一个专门预算和独立KPI的“大数据规划、建设和运营组织”。包括高层的首席数据官,作为sponsor,然后是公司数据管理委员会或大数据执行筹划指导委员会,再往下就是大数据的项目组或大数据项目组的前身:大数据项目预研究团队或大数据项目筹备组。这个团队是今后大数据战略的制定和实施者的中坚力量。由于人数众多,建议引入RACI模型来明确所有人的角色和职责。
二、大数据的现状评估和差距分析
定战略之前,先要做现状评估,评估前的调研包括三个方面:一是对外调研:了解业界大数据有哪些最新的发展,行业顶尖企业的大数据应用水平如何?行业的平均尤其是主要竞争对手的大数据应用水准如何?二是对内客户调研。管理层、业务部门、IT部门自身、我们的最终用户,对我们的大数据业务有何期望?三是自身状况摸底,了解自己的技术、人员储备情况。最后对标,作差距分析,找出gap。
找出gap后,要给出成熟度现状评估。一般而言,一个公司的大数据应用成熟度可以划分为四个阶段:初始期(仅有概念,没有实践);探索期(已经了解基本概念,也有专人进行了探索和探讨,有了基本的大数据技术储备);发展期(已经拥有或正在建设明确的战略、团队、工具、流程,交付了初步的成果);成熟期(有了稳定且不断成熟的战略、团队、工具、流程,不断交付高质量成果)。
三、大数据的战略
有了大数据组织、知道了本公司大数据现状、差距和需求,我们就可以制定大数据的战略目标了。大数据战略的制定是整个大数据生命周期的灵魂和核心,它将成为整个组织大数据发展的指引。
大数据战略的内容,没有统一的模板,但有一些基本的要求:
1. 要简洁,又要能涵盖公司内外干系人的需求。
2. 要明确,以便清晰地告诉所有人我们的目标和愿景是什么。
3. 要现实,这个目标经过努力是能达成的。
四、大数据的定义
我认为:“数据不去定义它,你就无法采集它;无法采集它,你就无法分析它;无法分析它,你就无法衡量它;无法衡量它,你就无法控制它;无法控制它,你就无法管理它;无法管理它,你就无法利用它”。所以“在需求和战略明确之后,数据定义就是一切数据管理的前提”。
五、 数据采集
1. 大数据时代的数据源很广泛,它们可能来自于三个主要方面:现有公司内部网各应用系统产生的数据(比如办公、经营生产数据),也有来自公司外互联网的数据(比如社交网络数据)和物联网等。
2.大数据种类很多,总的来讲可以分为:传统的结构化数据,大量的非结构化数据(比如音视频等)。
3. 数据采集、挖掘工具很多。可以基于或集成hadoop的ETL平台、以交互式探索及数据挖掘为代表的数据价值发掘类工具渐成趋势。
4. 数据采集的原则:在数据源广泛、数据量巨大、采集挖掘工具众多的背景下,大数据决策者必须清楚地确定数据采集的原则:“能够采集到的数据,并不意味着值得或需要去采集它。需要采集的数据和能够采集到的数据的"交集",才是我们确定要去采集的数据。”
六、数据处理和分析
业界有很多工具能帮助企业构建一个集成的“数据处理和分析平台”。对企业大数据管理者、规划者来讲,关键是“工具要满足平台要求,平台要满足业务需求,而不是业务要去适应平台要求,平台要去适应厂商的工具要求”。那么这个集成的平台应该有怎样的能力构成呢?它应该能检索、分类、关联、推送和方便地实施元数据管理等。见下图:
七、 数据呈现
大数据管理的价值,最终要通过多种形式的数据呈现,来帮助管理层和业务部门进行商业决策。大数据的决策者需要将大数据的系统与BI(商业智能)系统和KM(知识管理)系统集成。下图就是大数据的各种呈现形式。
八、 审计、治理与控制
1.大数据的审计、治理和控制指的是大数据管理层,组建专门的治理控制团队,制定一系列策略、流程、制度和考核指标体系,来监督、检查、协调多个相关职能部门的目标,从而优化、保护和利用大数据,保障其作为一项企业战略资产真正发挥价值。
2.大数据的治理是IT治理的组成部分,大数据的审计是IT审计的组成部分,这个体系要统筹规划和实施,而不是割裂的规划和实施。
3.大数据的审计、治理与控制的核心是数据安全、数据质量和数据效率。
九、 持续改进
基于不断变化的业务需求和审计与治理中发现的大数据整个生命周期中暴露的问题,引入PDCA等方法论,去不断优化策略、方法、流程、工具,不断提升相关人员的技能,从而确保大数据战略的持续成功!
B. 大数据具体是什么
二、什么是大数据(大数据是什么?)
大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
三、发展历程(大数据发展是否成熟?)
目前,我国大数据产业正处于高速发展期,多种商业模式得到市场印证,新产品和服务不断推出,细分市场走向差异化竞争。
四、和传统数据的区别(跟传统数据有什么区别?)
1、传统数据信息化:
传统数据信息化大多是存贮在本地,非全部公开数据资源,例如市场调研数据、企业数据、生产数据、制造数据、消费数据、医疗数据、金融数据等数据资源;把握数据资源的企业或行业也必然成为大数据的直接受益者。
2、大数据之移动互联网:
移动互联网的快速发展,搜索引擎及智能手机等移动设备成为重要的数据入口。社交网络、电子商务以及各类应用APP等将分散的"小数据"变成"大数据"。
3、大数据之物联网:
物联网的发展能够实现"万物互联",所有事物产生的信息都是数据,所有事物之间都具有"数据化"的联系。
五、应用领域(大数据用在哪些地方?)
C. 大数据分析项目需要经历哪些阶段
发现(目标定义):把业务问题转化为分析目标,制定初始假设。
数据准备:准备好分析沙盘,对分析沙盘中的数据执行ETL或ELT,转化成使用和分析的格式,逐步治理数据
规划模型:了解数据之间的关系,确定模型的关键变量,和合适的分析模型
模型建立:创建测试数据集,学习数据集,和生产数据集。运行模型,修正参数,测试模型的可用性,和对运行环境的要求
沟通结果:评判是否达到第一阶段的目标,是否满足业主的要求,是否可以上线运行。
实施:在生产环境部署和实施一个试点项目,应用项目模型。
关于大数据分析项目需要经历哪些阶段的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
D. 大数据时代发展历程是什么
大数据技术发展史:大数据的前世今生
今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapRece和NoSQL数据库系统BigTable。
你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。
现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。
因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。
当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapRece的功能。
两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapRece。
当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。
如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。
我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。
Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,网络和阿里巴巴也开始使用Hadoop进行大数据存储与计算。
2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。
同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。
这个时候,Yahoo的一些人觉得用MapRece进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapRece程序,然后在Hadoop上运行。
编写Pig脚本虽然比直接MapRece编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapRece的计算程序。
这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。
随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapRece工作流调度引擎Oozie等。
在Hadoop早期,MapRece既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapRece自己完成。但是这样不利于资源复用,也使得MapRece非常臃肿。于是一个新项目启动了,将MapRece执行引擎和资源调度分离开来,这就是Yarn。2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。
同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapRece进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapRece每执行一次Map和Rece计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapRece主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapRece在企业应用中的地位。
一般说来,像MapRece、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算。
而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算。
在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。
除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。
我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不群,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。
事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。
但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。
正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗的说,就是要在风口中飞翔。
上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。
此外,大数据要存入分布式文件系统(HDFS),要有序调度MapRece和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。
图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。
希望对您有所帮助!~
E. 大数据包括哪些
大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大数据技术包括数据采集,数据管理,数据分析,数据可视化,数据安全等内容。数据的采集包括传感器采集,系统日志采集以及网络爬虫等。数据管理包括传统的数据库技术,nosql技术,以及对于针对大规模数据的大数据平台,例如hadoop,spark,storm等。数据分析的核心是机器学习,当然也包括深度学习和强化学习,以及自然语言处理,图与网络分析等。