导航:首页 > 数据处理 > 如何成为一名数据大牛

如何成为一名数据大牛

发布时间:2023-01-03 18:36:44

① 做一名数据分析师要具备什么能力

数据分析是干什么的?

在企业里收集数据、计算数据、提供数据给其他部门使用的。

数据分析有什么用?

从工作流程的角度看,至少有5类分析经常做:

② 一文读懂如何成为数据科学家

你为成为数据科学家做了充分的准备,但实际的工作将于你的预期大不相同。
你为成为数据科学家做好了充分的准备。你参加Kaggle比赛,看了大量的Coursera课程。你感觉已经准备好了,但数据科学家的实际工作将与你的预期大不相同。
本文探讨了数据科学家新手的5个常见错误。这是由我在Sébastien Foucaud博士的帮助下一起总结的,他在学术界和行业领域有指导年轻数据科学家有超过20年的经验。本文旨在帮助你更好地为数据科学家的实际工作做好准备。
误区1 热衷参加Kaggle比赛
你通过参与Kaggle比赛练习了数据科学技能。如果你掌握决策树和神经网络那就再好不过了。但其实作为数据科学家,你不需要完成这么多的模型融合。记住,一般来说你将花80%的时间进行数据预处理,剩下20%的时间用于构建模型。
参加Kaggle比赛的好处在于,给出的数据都很从而你有更多的时间调整模型。但是在实际工作中则很少出现这种情况,你需要使用不同的格式和命名方式来汇总不同来源的数据。
你需要做的是,熟练掌握你大部分时间将要做的事,即数据预处理。例如抓取图像或从API收集图像;从Genius收集歌词数据等。为解决特定问题准备所需的数据,然后将其输入到计算机中开始机器学习生命周期。精通数据预处理无疑将大大帮助你成为一名出色的数据科学家,从而让你在公司制定决策中起到关键作用。
误区2 神经网络能搞定一切
深度学习模型在计算机视觉和自然语言处理领域优于其他机器学习模型。但也有明显的缺点。
神经网络需要大量数据。如果样本较少,那么使用决策树或逻辑回归模型效果会更好。众所周知,神经网络难以说明和解释,因此被称为”黑匣子“。当产品负责人或主管对模型输出产生质疑时,你必须进行解释,而传统的模型更容易解释。
有很多出色的统计学习模型,你需要了解其优缺点,并根据具体任务应该相关模型。除非是用于计算机视觉或自然语音识别等专业领域,否则传统的机器学习算法的成功率会更高。你很快就会发现,像逻辑回归等简单的模型是最好的模型。
误区3 机器学习是产品
在过去十年机器学习大受吹捧,许多创业公司都认为机器学习能解决任何存在的问题。
机器学习永远不应该是产品。机器学习是强大的工具,用于生产满足客户需求的产品的。机器学习可以用于让客户收到精准的商品推荐;准确识别图像中的对象;帮助企业向用户展示有价值的广告。
作为数据科学家,你必须以客户为目标制定计划,从而你才能充分利用机器学习。
误区4 混淆因果关系和相关性
大约90%的数据是在过去几年中产生的。随着大数据的出现,机器学习从业者可以获得大量数据。由于有大量的数据需要分析评估,学习模型也更容易发现随机的相关性。
上图显示了美国小姐的年龄与蒸汽、热蒸汽和发热物体导致的谋杀总数。根据这些数据,算法会学习美国小姐的年龄与某些物体导致谋杀的模式。然而,这些数据点实际上是无关的,并且这两个变量对其他变量没有任何预测作用。
当在数据中发现模式时,要应用你的专业知识。当中是相关性还是因果关系?回答这些问题是从数据中得出分析见解的关键。
误区5 优化错误的指标
开发机器学习模型遵循敏捷的生命周期。首先,你定义概念和关键指标。然后,将结果原型化。接着,不断进行改进直到指标令你满意。
在你构建机器学习模型时,记得要进行手动错误分析。虽然这个过程繁琐且费时费力,但可以帮助你在迭代中有效地改进模型。
结语
年轻的数据科学家能为公司提供巨大价值。他们通常是自学成才,因为很少有大学提供数据科学学位。同时他们具有强烈的好奇心,并且对自己选择的领域充满热情,并渴望了解更多的知识。因此对于刚入行的数据科学家来说,一定要注意以上提到的误区。
注意以下几点:
· 练习数据管理
· 研究不同模型的优缺点
· 让模型尽可能简单
· 检查结论中的因果性和相关性
· 优化最有希望的指标

③ 如何成为一名数据科学家

保持开放的心态。如果你是一个新手,实际上并不知道什么是数据科学,所以它完全有可能不是你想要的工作领域。要成为数据科学家需要花费大量的时间和精力,请充分了解数据科学中不好的方面,比如数据整理,以及构建数据生产流水线,而这些工作占了数据科学家日常工作的大部分时间。

首先要做的是学习Python。尽快在MOOC上选择相关的课程项目,当熟悉Python基本用法后,请学习如何使用Jupyter工具,并选学一些数据科学领域的网络公开课。

如果你是完全从零开始的,一开始就以高级的数据科学职位为目标可能不太好,选择一些入门级的职位比较好,比如数据可视化或数据分析职业的需求量很大,并且市场需求也大。这些岗位的人员通常与数据科学家一起工作,一旦你积累了相关经验,就为今后的胜任更高级的数据科学相关职位奠定了基础。

④ 计算机,如何成为一名大牛

结合硬件熟练c语言,了解硬件是如何在软件的操控下工作的。作为cs工程师不要纠结于具体的硬件电气特性,除非你做firmware或者driver(还要了解框架),熟悉平台下编程接口(c接口),现在理论上你应该能够作任何你想做的事情了,因为你有c语言这样的利剑,还有操作系统这样一个平台,而且还有linux,github这样的代码仓库,google当然更是离不开的,我的经验你总是能够找到你想做的东西的参考,甚至有些很好。想进阶可以读一下linux驱动代码,从而深入内核,进城调度,内存管理等模块,。当然理论还是重要的,多看书,原理相关的深入之类的,为什么我一直强调c不是c+更不是Java
之流,因为目前来说c
与硬件的结合最好,操作系统核心都是c
写的,以及所有暴露给上层的接口,c
讲究的是控制,如果用习惯了在用其他语言会有发慌的感觉,因为很多事情不知道怎么就被干了,。有了系统背景再去看一些高质量开源项目,不断学习演练,进而学习面向对象语言,也不过就那么回事吧,也只就是把数据和操作做了个绑定,起个名字叫类型,效率确实提高了,灵活性也降低了,我的理解面向对象语言其实失当胶水来用的,体现的一种粘,看场景选择用吧,我都是c
语言底层正交模块,python快速原型实现,再用c➕实现,最终完善性能,现在来看c➕用的好性能跟c差距没多大,。说到现在还住要集中在底层系统和语言,其实要想成为一个大牛需要的是内功,也就是计算机课中学的各种原理云云,还要一定的数学涵养,加上日复一日的编码调试,路还长。。。

⑤ 如何成为一名顶级战斗力的数据分析师

一、公软件1)熟练使用excel,Access,Visio等MSOffice公软件,可以制作相关的原型;(MS即microsoft微软,MSOffice是微软提供的系列软件,Word,Excel,PowerPoint,Access,OutLook,Publisher,InfoPath这7个公软件中,常用的是前4个。)2)重点掌握EXCEL表,会使用高级功能,能快速制作报表,熟练使用EXCELVBA;二、数据分析软件及方法1)熟练使用各种数理统计、数据分析、数据挖掘工具软件,熟悉各种网站分析软件的应用,如GoogleAnalytics、网络统计、Omniture等;2)具备相关数据分析软件的使用经验SPSS\SAS\EVIEW\STATA\R\Weka……3)至少精通使用IBMIntelligentMiner、SASEnterpriseMiner、SPSSClementine、LEVEL5Quest、SGI、WinRosa、ExcelVBA、S-plus、Matlab、SSIS等等常见数据挖掘软件中的一个进行数据挖掘的开发工作;4)熟练使用至少一种网站流量分析工具(GoogleAnalytics、Webtrends、网络统计等),并掌握分析工具的部署、配置优化和权限管理;5)精通一种或多种数据挖掘算法(如聚类、回归、决策树等);6)熟悉维基编辑者优先;7)使用软件的要求;(7.1)掌握数据分析、挖掘方法,具备使用Excel、SQL、SPSS/SAS、Powerpoint等工具处理和分析较大量级数据的能力;(7.2)能够综合使用各种数理统计、数据分析、制表绘图等软件进行图表、图像以及文字处理;(7.3)掌握常用的数据统计、分析方法,有敏锐的洞察力和数据感觉,优秀的数据分析能力;(7.4)能够综合使用各种数理统计、数据分析、数据挖掘、制表绘图等软件进行具有基本数据美感的图表、图像以及文字处理。三、数据库语言1)熟悉Linux操作系统及至少一种脚本语言(Shell/Perl/Python);2)熟练掌握C/C++/Java中的一种,有分布式平台(如Hadoop)开发经验者优先;3)熟悉数据库原理及SQL基本操作;(3.1)了解Mysql,postgresql,sqlserver等数据库原理,熟悉SQL,具备很强的学习能力,写过程序,会perl,python等脚本语言者优先;(3.2)熟练应用mysql的select,update等sql语句;4)熟悉sqlserver或其他主流数据库,熟悉olap原理;5)熟悉Oracle或其他大型数据库。四、思维能力等方面1)具备良好的行业分析、判断能力、及文字表达能力;2)沟通、协调能力强,有较高的数据敏感性及分析报告写作能力;3)理解网站运营的常识,能从问题中引申出解决方案,提供设计改进建议;4)具有良好经济学、统计学及相关领域的理论基础,熟悉数理统计、数据分析或市场研究的工作方法,具有较强的数据分析能力;5)熟悉数据分析与数理统计理论,具有相关课程研修经历。五、其他要求1)较强的英文听说读写能力,英语6级以上;2)文笔良好;3)了解seo,sem优先;4)知识要求:同时具备统计学、数据库、经济学三个领域的基础知识;英语四级或以上、熟悉指标英文名称;具备互联网产品设计知识;5)具有深厚的数据分析、数据挖掘理论知识,深入了解相关技术;能熟练使用至少一种统计分析或数据挖掘工具。

⑥ 如何学习成为一名数据分析师

学习数据分析师之前,你必须清楚自己想要达成什么目标。也就是说,你想通过这门技术来解决哪些问题或实现什么计划。有了这个目标,你才能清晰地开展自己的学习规划,并且明确它的知识体系。

⑦ 想成为一名大数据工程师,需要具备哪些技能

1、 掌握至少一种数据库开发技术:Oracle、Teradata、DB2、Mysql等,灵活运用SQL实现海量数据ETL加工处理。

2、 熟悉Linux系统常规shell处理命令,灵活运用shell做的文本处理和系统操作。

3、 有从事分布式数据存储与计算平台应用开发经验,熟悉Hadoop生态相关技术并有相关实践经验着优先,重点考察Hdfs、Maprece、Hive、Hbase。

4、 熟练掌握一门或多门编程语言,并有大型项目建设经验者优先,重点考察Java、Python、Perl。

5、 熟悉数据仓库领域知识和技能者优先,包括但不局限于:元数据管理、数据开发测试工具与方法、数据质量、主数据管理。

6、 掌握实时流计算技术,有storm开发经验者优先。

关于想成为一名大数据工程师需要具备哪些技能的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑧ 如何成为一名数据科学家

简单的说,原理和基础都在数学这边。线性代数(矩阵表示和运算)是基础中的基础,微积分(求导,极限);数据处理当然需要编程了,因此C/C++/Python任选一门,数据结构可以学学,只是让你编程更顺手,但是编程不是数据处理的核心。

Mid-level的课程,概率论+统计(很多数据分析基于统计模型),线性规划+凸优化(统计到最后也还是求解一个优化问题,当然也有纯优化模型不用统计模型的)再高阶的课程,就是些研究生的课程了,就比较specific了,可以看你做的项目再选择选修,比如:Probabilistic Graphical Models, Nolinear Programming, Integer Programming, Machine Learning(其实机器学习,学的都是一些统计和优化),图像处理,deep learning, 神经网络,等等等等。学到Mid-level,然后做几个实际项目,就能上手咯。要读Phd搞科研,才上高阶的。

⑨ 如何成为大数据分析师

首先你要知道成为一名数据分析师所需要具备的技能:

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。


对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。


数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。


当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。


对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。


对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。


对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。


数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。


对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。


数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。


对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

⑩ 如何成为一名大数据工程师

1.大数据架构的工具与组件


数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。


2.深入了解SQL和其它数据库解决方案


数据工程师需要对数据库管理系统有比较熟悉的了解,而且深入了解SQL非常重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。


3.数据仓库和ETL工具


数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。另外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。


4.基于Hadoop的分析


对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapRece的知识存储是必需的。


5.编码


说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。

阅读全文

与如何成为一名数据大牛相关的资料

热点内容
怎么数据加载失败了 浏览:289
如何代理百度竞价秒收 浏览:382
泉州万祥物流是什么产品 浏览:797
免费交易平台哪个好 浏览:40
机务技术员就业情况如何 浏览:391
山海经这游戏怎么代理 浏览:929
眼部祛斑产品有哪些 浏览:832
合肥红酒代理商有哪些 浏览:847
湖人交易动向如何 浏览:16
程序员熬夜加班到多少点 浏览:419
新上一个功能需采集哪些数据 浏览:702
招聘基础信息怎么填 浏览:981
刘总现在在哪个市场 浏览:429
公交车驱动程序怎么取名 浏览:268
被抽样调查的原始数据叫什么 浏览:868
人保代驾如何使用代理 浏览:667
怎么引用表格中变动的数据 浏览:153
如何评选贫困户程序 浏览:234
房子按揭期间怎么变更信息 浏览:807
如何写社保方面的信息 浏览:108