Ⅰ 预处理是什么 包括哪两种方法
数据库基础分析为什么要进行预处理数据 收藏
做数据预处理很重要,但是如何做好数据预处理似乎是件更困难的事。。。。。
-----------------------------------------------------------------------------------------------------------------------
当今现实世界的数据库极易受噪声、丢失数据和不一致数据的侵扰,因为数据库太大(常常多达数千兆字节,甚至更多),并且多半来自多个异构数据源。低质量的数据将导致低质量的挖掘结果。“如何预处理数据提高数据质量,从而提高挖掘结果的质量?如何预处理数据,使得挖掘过程更加有效、更加容易?”
有大量数据预处理技术。数据清理可以用来去掉数据中的噪声,纠正不一致。数据集成将数据由多个源合并成一致的数据存储,如数据仓库。也可以使用数据变换,如规范化。例如,规范化可以提高涉及距离度量的挖掘算法的准确率和有效性。数据归约可以通过聚集、删除冗余特征或聚类等方法来减小数据规模。这些技术不是互斥的,可以一起使用。例如,数据清理可能涉及纠正错误数据的变换,如将日期字段变换成共同的格式。这些数据处理技术在挖掘之前使用,可以显着地提高挖掘模式的总体质量和/或减少实际挖掘所需要的时间。
介绍数据预处理的基本概念,介绍作为数据预处理基础的描述性数据汇总。描述性数据汇总帮助我们研究数据的一般特征、识别噪声或离群点,对成功的数据清理和数据集成很有用。数据预处理的方法组织如下:数据清理、数据集成与变换和数据归约。概念分层可以用作数据归约的一种替换形式,其中低层数据(如年龄的原始值)用高层概念(如青年、中年或老年)替换。这种形式的数据归约,在那里我们讨论使用数据离散化技术,由数值数据自动地产生概念分层。
为什么要预处理数据
想象你是AllElectronics的经理,负责分析涉及你部门的公司销售数据。你立即着手进行这项工作,仔细地审查公司的数据库和数据仓库,识别并选择应当包含在分析中的属性或维,如item, price和units_sold。啊!你注意到许多元组在一些属性上没有值。为了进行分析,希望知道每种购进的商品是否作了销售广告,但是发现这些信息没有记录下来。此外,你的数据库系统用户已经报告某些事务记录中的一些错误、不寻常的值和不一致性。换言之,你希望
使用数据挖掘技术分析的数据是不完整的(缺少属性值或某些感兴趣的属性,或仅包含聚集数据),含噪声的(包含错误或存在偏离期望的离群值),并且是不一致的(例如,用于商品分类的部门编码存在差异)。欢迎来到现实世界!
存在不完整的、含噪声的和不一致的数据是现实世界大型的数据库或数据仓库的共同特点。不完整数据的出现可能有多种原因。有些感兴趣的属性,如销售事务数据中顾客的信息,并非总是可用的。其他数据没有包含在内只是因为输入时认为是不重要的。相关数据没有记录可能是由于理解错误,或者因为设备故障。与其他记录不一致的数据可能已经删除。此外,记录历史或修改的数据可能被忽略。缺失的数据,特别是某些属性上缺少值的元组可能需要推导出来。
数据含噪声(具有不正确的属性值)可能有多种原因。收集数据的设备可能出故障;人或计算机的错误可能在数据输入时出现;数据传输中的错误也可能出现。这些可能是由于技术的限制,如用于数据传输同步的缓冲区大小的限制。不正确的数据也可能是由命名约定或所用的数据代码不一致,或输入字段(如日期)的格式不一致而导致的。重复元组也需要数据清理。
数据清理例程通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。如果用户认为数据是脏的,则他们不会相信这些数据的挖掘结果。此外,脏数据造成挖掘过程陷入混乱,导致不可靠的输出。尽管大部分挖掘例程都有一些过程处理不完整或噪声数据,但它们并非总是鲁棒的。相反,它们着重于避免建模函数过分拟合数据。因此,一个有用的预处理步骤是使用一些清理例程处理数据。2.3节讨论清理数据的方法。回到你在AllElectronics的任务,假定在分析中包含来自多个数据源的数据。这涉及集成48 多个数据库、数据立方体或文件,即数据集成。代表同一概念的属性在不同的数据库中可能有不同的名字,这将导致不一致性和冗余。例如,顾客标识属性在一个数据库中可能是customer_id,而在另一个中为cust_id。命名的不一致还可能出现在属性值中。例如,同一个人的名字可能在一个数据库中登记为“Bill”,在第二个数据库中登记为“William”,而在第三个数据库中登记为“B”。此外,你可能会觉察到,有些属性可能是由其他属性(例如年收入)导出的。含大量冗余数据可能降低知识发现过程的性能或使之陷入混乱。显然,除数据清理之外,在数据集成时必须采取步骤,避免数据冗余。通常,在为数据仓库准备数据时,数据清理和集成将作为预处理步骤进行。还可以再次进行数据清理,检测和删去可能由集成导致的冗余。
回到你的数据,假设你决定要使用诸如神经网络、最近邻分类法或聚类这样的基于距离的挖掘算法进行分析。如果待分析的数据已经规范化,即按比例映射到一个特定的区间[0.0,1.0],这些方法能得到更好的结果。例如,你的顾客数据包含年龄和年薪属性。年薪属性的取值范围可能比年龄大得多。这样,如果属性未规范化,距离度量对年薪所取的权重一般要超过距离度量对年龄所取的权重。此外,分析得到每个客户区域的销售额这样的聚集信息可能是有用的。这种信息不在你的数据仓库的任何预计算的数据立方体中。你很快意识到,数据变换操作,如规范化和聚集,是导向挖掘过程成功的预处理过程。
随着你进一步考虑数据,你想知道“我选择用于分析的数据集太大了,肯定降低挖掘过程的速度。有没有办法压缩我的数据集而又不损害数据挖掘的结果?”数据归约得到数据集的简化表示,它小得多,但能够产生同样的(或几乎同样的)分析结果。有许多数据归约策略,包括数据聚集(例如建立数据立方体)、属性子集选择(例如通过相关分析去掉不相关的属性)、维度归约(例如使用诸如最小长度编码或小波等编码方案)和数值归约(例如使用聚类或参数模型等较小的表示“替换”数据)。使用概念分层泛化也可以“归约”数据。泛化用较高层的概念替换较低层的概念,例如,对于顾客位置,用region或49 province_or_state替换city。概念分层将概念组织在不同的抽象层。数据离散化是一种数据归约形式,对于从数值数据自动地产生概念分层是非常有用的。
下图总结了这里讨论的数据预处理步骤。注意,上面的分类不是互斥的。例如,冗余数据的删除既是一种数据清理形式,也是一种数据归约。
概言之,现实世界的数据一般是脏的、不完整的和不一致的。数据预处理技术可以改进神经网络和最近邻分类法在第6章介绍,聚类在第7章讨论。
数据的质量,从而有助于提高其后的挖掘过程的精度和性能。由于高质量的决策必然依赖于高质量的数据,因此数据预处理是知识发现过程的重要步骤。检测数据异常、尽早地调整数据并归约待分析的数据,将在决策过程得到高回报。
Ⅱ 大数据预处理包含哪些
一、数据清理
并不一定的数据全是有使用价值的,一些数据并不是大家所关注的内容,一些乃至是彻底不正确的影响项。因而要对数据过滤、去噪,进而获取出合理的数据。
数据清理关键包括忽略值解决(缺乏很感兴趣的属性)、噪声数据解决(数据中存有着不正确、或偏移期待值的数据)、不一致数据解决。
忽略数据能用全局性变量定义、属性平均值、将会值填充或是立即忽视该数据等方式;噪声数据能用分箱 (对初始数据开展排序,随后对每一组内的数据开展平滑处理)、聚类算法、电子计算机人工服务定期检查重归等方式 除去噪声。
二、数据集成与转换
数据集成就是指把好几个数据源中的数据融合并储存到一个一致的数据库文件。这一全过程中必须主要处理三个难题:模式匹配、数据冗余、数据值冲突检测与解决。
因为来源于好几个数据结合的数据在取名上存有差别,因而等额的的实体线常具备不一样的名字。数据集成中最后一个关键难题就是数据值矛盾难题,具体表现为来源于不一样的统一实体线具备不一样的数据值。
三、数据规约
数据规约关键包含:数据方集聚、维规约、数据缩小、标值规约和定义层次等。
倘若依据业务流程要求,从数据库房中获得了剖析所必须的数据,这一数据集将会十分巨大,而在大量数据上开展数据剖析和数据发掘的成本费又非常高。应用数据规约技术性则能够 完成数据集的规约表明,促使数据集缩小的另外依然趋于维持原数据的一致性。在规约后的数据集在开展发掘,仍然可以获得与应用原数据集几近同样的剖析结果。
关于大数据预处理包含哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅲ 【数据分析】-006-数据预处理-数据规约
在大数据集上进行复杂的数据分析和挖掘需要很长的时间,数据规约产生更小但保持原 数
据完整性的新数据集。在规约后的数据集上进行分析和挖掘将更有效率。
属性规约通过属性合并来创建新属性维数,或者直接通过删除不相关的属性(维)来减少数据维数,从而提高数据挖掘的效率、降低计算成本。属性规约的目标是寻找出最小的属性子集并确保新数据子集的概率分布尽可能地接近原来数据集的概率分布。
逐步向前选择、逐步向后删除和决策树归纳是属于直接删除不相关属性(维)方法。主成分分析是一种用于连续属性的数据降维方法,它构造了原始数据的一个正交变换,新空间的基底去除了原始空间基底下数据的相关性,只需使用少数新变量就能够解释原始数据中的大部分变异。在应用中,通常是选出比原始变量个数少,能解释大部分数据中的变量的几个新变量,即所谓主成分,来代替原始变量进行建模。
1)设原始变量 的 n 次观测数据矩阵为:
2)将数据矩阵按列进行中心标准化。为了方便,将标准化后的数据矩阵仍然记为X。
3)求相关系数矩阵 的定义为:
其中,
4)求&的特征方程 的特征根 。
5)确定主成分个数 根据实际问题确定,一般取80%。
6)计算m个相应单位特征向量:
7)计算主成分:
在 Python 中,主成分分析的函数位于 Scikit-Leam 下:
sklearn.decomposition.PCA(n_components = None, = True, whiten = False)
参数说明:
原始数据从8维被降维到了3维,关系式由公式确定,同时这3维数据占了原始数据95%以上的信息。
数值规约指通过选择替代的、较小的数据来减少数据量,包括有参数方法和无参数方法两类。
有参数方法是使用一个模型来评估数据,只需存放参数,而不需要存放实际数据,例如回归(线
性回归和多元回归)和对数线性模型(近似离散属性集中的多维概率分布)。无参数方法就需要
存放实际数据,例如直方图、聚类、抽样(采样)。
用于数据规约时,抽样最常用来估计聚集査询的结果。在指定的误差范围内,可以确定 (使用中心极限定理)估计一个给定的函数所需的样本大小。通常样本的大小 s 相对于 N 非常 小。而通过简单地增加样本大小,这样的集合可以进一步求精。
Ⅳ 在数据清洗过程中主要进行怎样哪两类处理
输入数据后需要对数据进行预处理,只有处理得当的数据才能进到数据挖掘的步骤。而处理数据包括对数据数量和质量的处理。我按照少—多—乱来整理。
1 对缺失的数据有添补或删除相关行列方法,具体步骤自己判断(如果数据量本来就很少还坚持删除不就作死了是吧)
★添补:常用拉格朗日插值或牛顿插值法,也蛮好理解,属于数理基础知识。(pandas库里自带拉格朗日插值函数,而且这个好处是还可以在插值前对数据进行异常值检测,如果异常那么该数据就也被视为需要进行插值的对象)
★删除:这个也好理解,就是对结果分析没有直接影响的数据删删删爱少少不去管。
2 异常值
这个是否剔除需要视情况而定
★像问题1中视为缺失值重新插值
★删除含有异常值的记录(可能会造成样本量不足,改变原有分布)
★平均值修正(用前后两个观测值平均值)
综上,还是方案一靠谱。
人生苦短,学好python
3 数据量太多,有三种方法:集成,规约,变换
(1)数据是分散的时,这个就是指要从多个分散的数据仓库中抽取数据,此时可能会造成冗余的情况。此时要做的是【数据集成】。
数据集成有两方面内容:
①冗余属性识别②矛盾实体识别
属性:
对于冗余属性个人理解是具有相关性的属性分别从不同的仓库中被调出整合到新表中,而新表中由于属性太多造成冗余,这时可以靠相关性分析来分析属性a和属性b的相关系数,来度量一个属性在多大程度上蕴含另一个属性。(这个用python的pandas库里corr()函数也可以实现),检测出了再将其删除。
实体:(这个是要靠自己甄别源表,所以源仓库里的实体含义要清楚)
a,同名异义——改名字
b,异名同义——删一个
c,单位不统一—换
(2)数据规约
又包括两方面
属性规约和数量规约
①属性规约:就是减少属性个数或合并旧属性成一个新属性,可以特征子集选择(删除不需要作挖掘的属性),主成分分析(通过对方差的决定性大小分析并降维),决策树归纳,向前/向后删除。
具体的如果不了解可以找个实例试一下。
②数量规约:通过选择替代的,较小的数据来减少数据量,包括有参数和无参数。
有参数:建模,并且只需存放模型的参数,例如一些回归模型,用参数来评估数据。
无参数:需要存放实际数据,用图表存放并显示数据,例如用直方图时可把步长设置一定的区间,来衡量区间内的频数,也起到了规约的目的。还有一些聚类(用簇来替换实际数据)。还有抽样(聚类抽样,分层抽样)
Ⅳ 数据挖掘的数据处理
数据挖掘的数据处理
从数据本身来考虑,数据挖掘通常需要有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示8个步骤。
步骤(1)信息收集:根据确定的数据分析对象,抽象出在数据分析中所需要的特征信息,然后选择合适的信息收集方法,将收集到的信息存入数据库。对于海量数据,选择一个合适的数据存储和管理的数据仓库是至关重要的。
步骤(2)数据集成:把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享。
步骤(3)数据规约:如果执行多数的数据挖掘算法,即使是在少量数据上也需要很长的时间,而做商业运营数据挖掘时数据量往往非常大。数据规约技术可以用来得到数据集的规约表示,它小得多,但仍然接近于保持原数据的完整性,并且规约后执行数据挖掘结果与规约前执行结果相同或几乎相同。
步骤(4)数据清理:在数据库中的数据有一些是不完整的(有些感兴趣的属性缺少属性值)、含噪声的(包含错误的属性值),并且是不一致的(同样的信息不同的表示方式),因此需要进行数据清理,将完整、正确、一致的数据信息存入数据仓库中。不然,挖掘的结果会差强人意。
步骤(5)数据变换:通过平滑聚集、数据概化、规范化等方式将数据转换成适用于数据挖掘的形式。对于有些实数型数据,通过概念分层和数据的离散化来转换数据也是重要的一步。
步骤(6)数据挖掘过程:根据数据仓库中的数据信息,选择合适的分析工具,应用统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络、遗传算法的方法处理信息,得出有用的分析信息。
步骤(7)模式评估:从商业角度,由行业专家来验证数据挖掘结果的正确性。
步骤(8)知识表示:将数据挖掘所得到的分析信息以可视化的方式呈现给用户,或作为新的知识存放在知识库中,供其他应用程序使用。
数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步,例如在某个工作中不存在多个数据源的时候,步骤(2)便可以省略。
步骤(3)数据规约、步骤(4)数据清理、步骤(5)数据变换又合称数据预处理。在数据挖掘中,至少60%的费用可能要花在步骤(1)信息收集阶段,而其中至少60%以上的精力和时间花在了数据预处理过程中。
Ⅵ 简述什么是数据归约
数据归约是指在对挖掘任务和数据本身内容理解的基础上、寻找依赖于发现目标的数据的有用特征,以缩减数据规模,从而在尽可能保持数据原貌的前提下,最大限度地精简数据量。
Ⅶ 大数据预处理的方法有哪些
1、数据清理
数据清理例程就是通过填写缺失值、光滑噪声数据、识别或者删除离群点,并且解决不一致性来进行“清理数据”。
2、数据集成
数据集成过程将来自多个数据源的数据集成到一起。
3、数据规约
数据规约是为了得到数据集的简化表示。数据规约包括维规约和数值规约。
4、数据变换
通过变换使用规范化、数据离散化和概念分层等方法,使得数据的挖掘可以在多个抽象层面上进行。数据变换操作是提升数据挖掘效果的附加预处理过程。
Ⅷ 大学的哪个专业是研究数据挖掘的
研究数据挖掘的大学专业一般是人工智能专业,或者也可以叫作应用数学,然后研究大数据方向,总之和数学、人工智能分不开,下面将开始介绍。
所以,想学数据挖掘,就选数学专业。
Ⅸ 什么不属于大数据预处理技术
管理和调用数据不属于大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。
因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
大数据预处理技术包含什么?
通常数据预处理包含 3 个部分:数据清理、数据集成和变换及数据规约。
1.数据清理
数据清理主要包含遗漏值处理(缺少感兴趣的属性)、噪音数据处理(数据中存在错误或偏离期望值的数据)和不一致数据处理。
· 遗漏数据可用全局常量、属性均值、可能值填充或者直接忽略该数据等方法处理。
· 噪音数据可用分箱(对原始数据进行分组,然后对每一组内的数据进行平滑处理)、聚类、计算机人工检查和回归等方法去除噪音。
· 对于不一致数据则可进行手动更正。
2.数据集成
数据集成是指把多个数据源中的数据整合并存储到一个一致的数据库中。
这一过程中需要着重解决 3 个问题:模式匹配、数据冗余、数据值冲突检测与处理。
由于来自多个数据集合的数据在命名上存在差异,因此等价的实体常具有不同的名称。对来自多个实体的不同数据进行匹配是处理数据集成的首要问题。
数据冗余可能来源于数据属性命名的不一致,可以利用皮尔逊积矩来衡量数值属性,对于离散数据可以利用卡方检验来检测两个属性之间的关联。
数据值冲突问题主要表现为,来源不同的统一实体具有不同的数据值。数据变换的主要过程有平滑、聚集、数据泛化、规范化及属性构造等。
数据规约主要包括数据方聚集、维规约、数据压缩、数值规约和概念分层等。
使用数据规约技术可以实现数据集的规约表示,使得数据集变小的同时仍然近于保持原数据的完整性。
在规约后的数据集上进行挖掘,依然能够得到与使用原数据集时近乎相同的分析结果。
上述就是关于大数据预处理技术是什么,以及大数据预处理技术包含什么的全部内容介绍,想了解更多关于大数据预处理技术的信息,请继续关注中培教育