❶ 如何利用大数据技术构建用户画像
1、认识用户画像
用户画像简单来讲,就是用户信息标签化。即收集这个用户的各种数据和行为,从而得出这个用户的一些基本信息和典型特征,最后形成一个人物原型。一般用户画像会分析三个信息维度,分别是基本属性、消费购物以及社交圈。其中基本属性就是指用户的一些基本信息,比如年纪、性别、生日、学校、所在地等等。
2、利用大数据构建用户画像的好处
(1)精准营销:当企业和商家掌握了用户的一定信息后,就可以构建出清晰的用户画像,这样一来就可以根据用户的偏好、收入等标签,推荐给他们会感兴趣的商品和服务。
(2)用户统计:通过大数据我们可以对一些数据进行统计,比如我们经常会看到有一些APP的排行榜,甚至是渗透率、日活率这些具体数据都可以清晰统计出来。
(3)数据挖掘:构建智能推荐系统,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况。
(4)进行效果评估:其实相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务。比如你是一个买车的想要投放广告,但是不知道哪个渠道投放更好,就可以先尝试一下,看看数据反馈如何。
(5)私人订制:对服务或产品进行私人订制,然而不法商家也会利用用户画像来杀熟。
(6)业务经营分析:业务经营分析以及竞争分析,影响企业的商业决策,甚至发展战略。
3、构建用户画像的流程
(1)数据源端:一般来讲构建用户画像的数据来自于网站交易数据、用户行为数据、网络日志数据。当然也不仅限于这些数据,一些平台上还有个人征信数据。
(2)数据预处理:第一步是清洗,把一些杂乱无序的数据清洗一下,然后归纳为结构化的数据,最后是把信息标准化。我们可以把数据的预处理简单理解为把数据分类在一个表格中,这一步就是奠定数据分析的基石。
关于如何利用大数据技术构建用户画像,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❷ 大数据精准营销如何做
精准营销的实质是根据目标客户的个性化需求设计产品和服务,而大数据就是手段。大数据精准营销做法如下:
1、以用户为导向。
真正的营销从来都是以用户为中心的,而大数据把用户实实在在“画”在了眼前,营销者可以根据数据库内的数据构建用户画像,来了解用户消费行为习惯、以及年龄、收入等各种情况,从而对产品、用户定位、营销做出指导性的调整。
2、一对一个性化营销。
很多销售在推销产品时常常会遇到这样的问题:产品是一样的,但是用户的需求是各不相同的,如何把相同的产品卖给不同的用户?这就需要我们进行“一对一”个性化营销。利用大数据分析,可以构建完善的用户画像,了解消费者,从而做出精准的个性化营销。
3、深度洞察用户。
深度洞察用户,挖掘用户潜在需求,是数据营销的基础。利用数据标签,可以准确获知用户的潜在消费需求。
例如:我们得知一位用户曾购买过奶粉,那么我们可以得知,家里有小孩,相应的可以向他推送早教课程等适合婴幼儿的产品。洞察消费者需求后再进行投放,营销的效果将比撒网式有效且更易成交。
4、营销的科学性。
实践证明,数据指导下的精准营销相对于传统营销来说更具有科学性。向用户“投其所好”,向意向客户推荐他们感兴趣的东西,远远要比毫无目标的被动式营销更具成效。
大数据精准营销包含方面
1、用户画像
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。具体包含以下几个维度:
用户固定特征:性别,年龄,地域,教育水平,生辰八字,职业,星座。
用户兴趣特征:兴趣爱好,使用APP,网站,浏览/收藏/评论内容,品牌偏好,产品偏好。
用户社会特征:生活习惯,婚恋,社交/信息渠道偏好,宗教信仰,家庭成分。
用户消费特征:收入状况,购买力水平,商品种类,购买渠道喜好,购买频次。
用户动态特征:当下时间,需求,正在前往的地方,周边的商户,周围人群,新闻事件如何生成用户精准画像大致分成三步。
2、数据细分受众
在执行大数据分析的3小时内,就可以轻松完成以下的目标:精准挑选出1%的VIP顾客发送390份问卷,全部回收 问卷寄出3小时内回收35%的问卷 5天内就回收了超过目标数86%的问卷数所需时间和预算都在以往的10%以下。
3、预测
“预测”能够让你专注于一小群客户,而这群客户却能代表特定产品的大多数潜在买家。当我们采集和分析用户画像时,可以实现精准营销。这是最直接和最有价值的应用,广告主可以通过用户标签来发布广告给所要触达的用户。
这里面又可以通过上图提到的搜索广告,展示社交广告,移动广告等多渠道的营销策略,营销分析,营销优化以及后端CRM/供应链系统打通的一站式营销优化,全面提升ROI。
4、精准推荐
大数据最大的价值不是事后分析,而是预测和推荐,我就拿电商举例,"精准推荐"成为大数据改变零售业的核心功能。
数据整合改变了企业的营销方式,现在经验已经不是累积在人的身上,而是完全依赖消费者的行为数据去做推荐。未来,销售人员不再只是销售人员,而能以专业的数据预测,搭配人性的亲切互动推荐商品,升级成为顾问型销售。
❸ 大数据如何预测
大数据的本质是解决问题,大数据的核心价值就在于预测,而企业经营的核心也是基于预测而做出正确判断。在谈论大数据应用时,最常见的应用案例便是“预测股市”“预测流感”“预测消费者行为”等。
大数据预测则是基于大数据和预测模型去预测未来某件事情的概率。让分析从“面向已经发生的过去”转向“面向即将发生的未来”是大数据与传统数据分析的最大不同。
大数据预测的逻辑基础是,每一种非常规的变化事前一定有征兆,每一件事情都有迹可循,如果找到了征兆与变化之间的规律,就可以进行预测。大数据预测无法确定某件事情必然会发生,它更多是给出一个事件会发生的概率。
实验的不断反复、大数据的日渐积累让人类不断发现各种规律,从而能够预测未来。利用大数据预测可能的灾难,利用大数据分析癌症可能的引发原因并找出治疗方法,都是未来能够惠及人类的事业。
❹ 大数据精准营销如何做
大数据精准营销方法如下:
一、建立用户画像
根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型,包括用户固定特征、兴趣特征、社会特征、消费特征、动态特征等多个层面。然后从已知的数据出发,挖掘和寻找线索,分析用户需求,进一步开发市场。
传统时代的营销,以产品为中心,但是产品是否真的触达到最有需求的用户面前,谁也不能保证,而通过大数据建立用户画像,对每个消费者进行个性化匹配,一对一营销,甚至精确算清楚成交转化率,能够大大提高投资回报比。
二、用户分群分析
在大数据分析当中,描述分析是最基本的分析统计方法,其次还涉及到一些数据算法模型等,如响应率分析模型,客户倾向性模型等,帮助企业来更有针对性地进行营销推广。
大数据分析所能带来的价值,最大的价值是在预测和推荐上,依赖消费者的行为来分析消费者,将更加了解消费者,也能实现自身产品营销的最大化。
三、制定营销策略
有了用户画像,进行了相应的用户分群分析之后,企业能够更加清楚地了解到用户的需求,根据用户需求来推出新的营销策略。再根据营销策略推出之后的客户反响,来进一步验证策略是否正确,进行进一步的优化调整。
❺ 如何利用好大数据挖掘潜在用户
随着互联网的发展以及消费市场竞争的加剧:新品牌、新赛道、新渠道、新营销打法层出不穷。在快速演化的市场格局下,如何建立竞争壁垒、持续保持增长,需要重新立足数字化时代新消费崛起的背景,以洞察消费者体验为核心,重塑品牌价值,缜密布局增长策略。
只有全面精细地挖掘消费者的心智变化,如消费者的年龄、性别、消费习惯、生活现状、兴趣点等等信息,才能为接下来的内部创新提供正确的方向。优质的消费体验是提升品牌忠诚度的关键,也是企业维持稳定盈利模式的重要基础。随着互联网的发展以及消费市场竞争的加剧,消费者的每一条社媒发布、每一次社交互动、 每一次线上购买, 都反映了消费习惯、态度和行为。收集、分析这些数据并制定行之有效的消费体验决策是企业的业务刚需,更是撬动增长的差异化打法。
传统市调——耗时、耗人力、成本高、样本数量有限,且存在受访者隐藏真实想法的可能。
社交媒体大数据——符合用户沟通和线上行为习惯,无需人力、数据可自动全天候采集,数据量和分析维度更丰富、更客观、可信度更高 。
传统的用户数据收集有以下挑战:
01 线上、线下顾客体验触点繁多,碎片化的信息分散于企业各部门,无法利用整合数据快速了解消费需求和顾客体验,赋能管理决策。
02 传统调研样本量小,执行周期长,统计结果往往滞后于消费趋势,难以转化为可执行洞察来赋能产品创新和营销增长。
03市场情报数据源单薄,难以应付快速演化的市场竞争格局,缺乏统一的工具进行竞品对标,无法做到知己知彼。
基于实时大数据和机器学习算法的消费体验洞察,是真正“以消费者为核心”组织企业资源配 置的有效解决方案。消费体验洞察能够帮助企业快速采集和理解消费者需求、产品口碑、竞品动态、 新品趋势和消费热点,进而驱动营销、研发、顾客体验、零售运营等职能部门的专业人士把握商业机遇,敏捷应对快速变化中的消费市场。
第一步,细分人群画像 —— 了解ta们是谁,在哪儿,喜欢什么?
最佳实践案例(食品饮料)
某国际知名连锁餐饮品牌希望深入了希望了解中国咖啡市场的核心消费群体及细分人群画像。 运用机器学习建模后,对该品牌及竞品相关的逾 120万条消费者评论和社媒、电商和短视频讨论展开聚类分析,梳理出四大核心消费人群。
DataTouch®️数据分析平台再结合行业品类分布数据,由分析师进一步深入分析出细分人群的饮用环境、口味、 包装不同痛点诉求,结合品牌优劣势和人群特点给出针对性建议,为品牌未来精准产品定位和沟通策略提供了有力的决策依据 。
第二步,基于细分人群画像,指引产品精准沟通策略,捕获机会细分赛道和差异化产品概念方向定位
在了解市场格局和产品创新方向后,客户希望了解目标趋势品类在核心创新方向的细分受众画像。运用机器学习建模后,对每个创新方向相关的近千万条消费者评论和社媒、电商和短视频讨论展开聚类分析,梳理出4-5个核心消费人群。
DataTouch®️数据分析平台再结合行业品类分布数据,品牌竞争格局和顾客体验满意度,由分析师进一步深入分析出细分人群赛道的生活方式、场景需求,市场份额,机会定位,和在每一个产品属性(功效、使用感受、产品形态、包装等)的NLP深度学习情感分析,提炼未满足的痛点诉求,结合品牌定位优劣势和人群特点给出创新产品的差异化建议,为品牌未来精准产品定位和沟通策略提供了有力的数据洞察驱动的决策依据。
❻ 如何利用大数据思维来进行用户调研
如何利用大数据思维来进行用户调研
传统的产品调研,通常需要先行选定用户样本,之后耗费大量人力物力采用不同的调研方法,进行用户调研。如果把大数据应用到用户调研当中,凭借着海量的历史数据样本,对于调研问题,可以借助大数据进行预分析处理,之后再进行人工选择性介入处理,不仅可以提高用户调研的效率,以最快的速度响应用户需求,而且可以极大的降低用户调研的成本。基于此,本文试图利用大数据思维,来解读大数据时代下用户调研的新变化。
说明:本文提供的仅仅是大数据时代下,用户调研的思路。如果有具体的用户调研需求,欢迎向笔者提出,笔者将在下篇推文中,进行具体案例的探讨。
大数据作为一种生产资料,正在越来越深入的影响着人类社会。现在,大数据在电商领域,通过根据相似消费者的商品偏好,向顾客推荐更符合其个人喜好的商品,这一推荐方式不仅仅省去了消费者寻找商品的时间,更是提高了电商平台的收入。
同理,在音乐、电视剧、电影,广告投放、用户调研等领域,大数据的可用武之地也越来越广。那么,大数据时代给用户调研方式带来了哪些改变呢?
大数据被广泛应用以前,传统的用户调研方式,通常需要经过界定调研问题、制定调研计划、综合调研方法、设计调研问卷、总结调研结果这5个步骤。
但是,大数据被广泛应用以后,凭借着海量的历史数据样本,对于调研问题,可以借助多种公开的大数据工具进行预分析处理,之后再进行人工选择性介入处理,将二者进行比对,进行多轮TEST,帮助产品人员发现问题的真相。
一、设置出优秀的调研问题,调研便成功了一半
设置调研问题,处于整个调研的第一个环节,其重要性自然不言而喻。比如某些产品经理可能会提出“用户为什么不接受视频付费”,或者“是否有足够的用户愿意支付15元/月来观看正版高清视频,如果是更低或者更高的价格呢?”前一个调研问题过于宽泛,而后一个调研问题却又界定的过于单一。
如果将调研问题界定为:
哪一类用户最有可能使用视频网站的付费服务?视频网站不同档位的价格,分别会有多少用户愿意支付?所有视频网站中,会有多少用户会因为这项服务而选择该视频网站?相对于视频付费,如广告主赞助,这一方式的价值何在?当然,并非所有调研的调研内容都能如此具体明了:
有些属于探索性研究,这类调研的目的在于找出问题的真相,提出可能的答案,或新的创意;
有些属于描述性研究,这类调研重在描述项目内容的某些数量特征;
还有一些是因果性研究,这种调研的目的是检测现象之间是否存在因果关系。
二、根据调研问题,进行大数据预分析处理大数据的魅力在于采集的不是样本数据,而是全部数据。例如滴滴推出滴滴外卖服务、美团推出美团打车业务,得益于现代社交网络的发达程度,滴滴和美团几乎可以对微博、微信等社交媒体上的对于新推出服务的议论进行统计分析,从而提供更好的服务。
例如,可以通过网络指数了解网友对于此项服务的搜索行为,同时进行跟踪分析:
当然并不是所有的网友都会使用网络搜索,他们也有可能使用360搜索,这时就要借助360指数:
又或者用户采取其他方式来表达情绪和想法,比如社交媒体微博、微信,可能就会用到微博指数,第三方舆情监测和口碑分析工具,借助新浪微舆情进行口碑分析和文本挖掘:
说明:以上的大数据工具,仅列举了常用的3种。在实际操作中,大数据工具的选择,还需要根据用户具体的调研问题来确定。
三、人工介入,对调研问题进行针对性处理
可以根据大数据分析结果,人工介入到调研问题上来,进行有针对性的调研处理,这时候可以采用传统的调研方法。但是与以往不同的是,在采用这些调研方法时,不需再耗费大量成本进行种种调研。选择人工介入的目的,是为了更真实的感受调研过程,参与调研问题的处理上来。
传统的调研方法,通常有以下4种方式:
1.观察法
这种方法是采取不引人注目的方式,来观察消费者使用产品的情形,以收集最新数据资料。某些战略咨询公司在做调研时,十分信奉观察法。
下面是国内知名的营销咨询公司,华与华在《超级符号就是超级创意》里关于这一方法运用的片段,了解一下:
“比如你在超市里观察牙膏的消费,观察走到牙膏货架前的人,你会看到这样的一个过程:一个顾客推着购物车走过来,一边走一边浏览货架上的牙膏;停下来,注目于一盒牙膏片刻,继续往前走;停下来,拿起一盒牙膏,看后放下;又拿起一盒看看,再翻过来,仔细看包装,背后的文案放回货架;往前走两步,掉头回到最开始注目的那盒牙膏,仔细看看,包装背后的文案,放回货架;快步走回,第四步看的那盒牙膏仍进购物车里,选择结束。”
“不,没结束,他可能过一会儿会折回来,把刚才放进购物车里的牙膏放回货架,换成第二步注目的那盒,也可能两盒都要。这样你就观察到他买牙膏的整个过程,竟然有七个动作。”
2.焦点小组访谈法
这是一种基于人口统计特征、心理统计特征和其他因素的考虑,仔细的招募六到十个人,然后将他们召集在一起,在规定时间内与这些参与者进行讨论的一种调研方式,参与者通常可以得到一些报酬。
调研人员通常坐在座谈是隔壁的,装有单面镜的房间内,对座谈会的讨论过程进行观察。必须要注意的是:实时焦点小组访谈时,必须让参与者尽可能的感受到气氛轻松,力求让他们说真话。
3.行为资料分析法
用户在使用产品时所产生的种种行为都可以用来观察用户的心理,调研人员通过分析这些数据,可以了解用户的许多情况。
用户的浏览时长和浏览内容可以反映用户的实际偏好,它比用户口头提供给调研人员的一些陈述更为可靠。
4.实验法
通过排除所有可能影响观测结果的因素,来获得现象间真正的因果关系。
比如视频网站,向用户提供高清视频服务,第一季度只收费25元每月,第二季度收费15元每月。如果两次不同价格的收费,使用该服务的用户没有差异,那么视频网站就得不出如下结论:较高的服务费用会显着影响用户观看收费视频的意愿。
四、调研方法确定以后,就可以着手调研问卷的设计了
设置调查问卷,是为了收集一手资料。不过,由于问卷中问句的格式、次序和问句的顺序都影响问卷的填答效果,所以对问卷中的问句进行测试和调整是非常必要的。
问卷设计的注意事项:
五、总结调研结果
将大数据统计预分析得到的结果,同产品调研人员实际调研得出的结果,进行比对,从而将数据和信息转换成发现和建议。
最后,大功告成,根据市场调研所得的结果,就可以制定具体的营销决策。
说明:由于在这个过程中,运用传统调研方式,无需耗费大量人力物力,对于可疑结果,可以通过控制变量的方式,进行多轮TEST,帮助产品人员真正发现调研问题的真相。
❼ 电商平台如何利用大数据做好用户体验
在中国,通过大数据人物画像来实现流量个性化已非新鲜事,同时在大洋彼岸的美国,目前已经更进一步,通过最先进的数据分析平台,电商可以通过社交平台等数据对用户个性特征进行分析,从而实现更精准的营销,而且并非“财大气粗”的中小企业也可以享受到这样的福利。
不是所有的行为数据都有价值对于电商而言,其对大数据分析的主要需求可以体现在两方面,一是快速反应出问题所在,二是发现新的用户群体
对于备受关注的后者,电商希望通过智能联网分析已有的数据,发掘并预测出用户的兴趣所在,刺激用户购买积极性,并将产品推向特定人群。
目前业界的普通实现方式是,通过用户网络上留下的历史信息、记录,来猜测喜好,例如相关图书推荐、机票航班推荐等,但失算之处可能在于精准度和推荐时机不尽人意,比如用户已经旅行归来,系统还在推荐往返机票。
目前美国有一种研究方向,通过非结构化数据分析技术对用户进行个性化维度分析,包括对用户在网络上更新的个人状态信息进行分析,如Twitter、Facebook,推定用户个性及特征,以精准定义个人并实现标签化,同时反馈给商家并与目标市场用户相匹配,从而实现产品的关联。
对此,美国数据分析科学家、Taste Analytics创始人及全美五大可视化研究中心的Derek Wang(汪晓宇)博士表示,传统的方式需要基于大量的行为数据进行分析,并相信所有的动作具有价值,但事实却并非这样,容易造成对精准度和时机的把握不尽人意;而通过对人在网络上留下的真实语言、说话方式、评价内容等进行个性化维度分析,更贴近人真实的本性,这当然也包括购买喜好,只有这样才能实现更加准确的产品购买需求挖掘。
电商商户的“福利”
目前,该分析技术在电商平台上更能直接释放效力的方式,便是针对中小型商户的解决方案:对用户产品评价进行分析,来优化产品、提升用户体验。
Derek Wang举例道,通过Taste Analytics Signals数据分析平台,亚马逊平台上的耳机商户,可以对平台上用户的产品评价及Facebook上的留言进行语义分析,得出对耳机品牌、电池寿命、品种型号的用户反馈,以及不同产品间如Bose与Sony的产品分析。
这对于美国为数众多的亚马逊、新蛋、易贝商户而言无疑十分受用,其可以及时对产品和销售过程进行优化。
另一个典型应用是电商平台本身。美国某着名的大型家居销售企业,在其电商网络平台上,通过刺激网络流量来买卖产品。利用数据分析平台,其不仅发现并解决了用户消费时信用卡连刷2次的问题,同时观察到网络流量在一周中的不平均分布,后续通过市场促销,改变了市场营销过程。
(用Taste Analytics Signals平台对Amazon某热销汽水的分析结果)
决策在数据之上而非数据本身
用户的特征来自于文本分析,用户在网络上说的每一句话都将可能成为分析点。无疑更多的数据将有力于对用户行为进行匹配,提高分析准确性,而这方面社交平台则提供了一个很好的非结构化数据的来源。
事实上,美国电商本身已经在开始着手整合社交网络的数据信息,例如闪购网站Myhabit建议用户通过亚马逊账号登陆;电商Macys需要用Facebook账号登陆(这样的整合在国内也并不鲜见)。对于用户,这样的登陆方式更方便快捷;对于商户,可以将个人信息关联起来;而对于大数据技术/服务提供商,数据分析服务便可以由此展开,进行深度数据挖掘。
在Derek Wang看来,此项围绕人的非结构化数据分析平台服务,不仅能提升结果的准确性,更重要的是它建立的不是一个推荐系统,而是一个增强智慧的过程。毕竟仅基于既有行为的数据分析会导致可能的失败,小到上述提及的机票推荐,大到金融领域采用数学模型的危险性在次贷危机中已经暴露无疑。
“由机器提取的数据内涵,通过图像的方法展示给企业决策者,决策者通过与机器互动后做出决定。数据分析平台是辅助企业决策者的工具,也是它的价值所在。” Derek Wang说道。
不谋而合,《纽约时报》资深撰稿人史蒂夫·洛尔曾着书大数据时评论,虽然决策活动对数据与分析的倚重与日俱增是大势所趋,但同时还要让常识发挥应有的作用,经验与直觉仍然在决策中占有一席之地,而好的直觉又往往建立在大量数据分析基础之上。
机器与人分工合作才更好,更加值得一提的是,直观的图像可视化的呈现方式,使得电商及商户的内部分析师即使没有IT背景,也可以轻松地掌握产品动态,从而帮助其赢得市场。
大数据确有裨益,但并不是所有企业都能成功掘金大数据;只有那些富有远见、重视系统且敢于投资的公司才会有所斩获。对于零售业而言,有三个重要战略可帮助电子商务成功运用大数据。
正确理解大数据
不必纠结于大数据到底是什么,试图计算出多少数据才算大数据是不明智的。首先,没有确切的数字或数量级可用作数据量的分界线,因为大数据不在“量”,而在“全”。通过对全面数据的分析可以发现相应的趋势,进一步预测未来。想要掌握大数据,必须具备“大数据”的思维模式,即关注于那些已帮助完成了某项任务的数据。从庞大的历史数据中寻找规律,从而预测未来;或者找出有关因素,对搜索最佳数据的系统进行改善,获得正确数据取得最大利益。
如何获取大数据?
大数据被炒热和巨无霸企业在其中获得的巨大商业价值密不可分,但这并不意味着大数据是只有大公司才买得起的“独有玩偶”。小公司也能拥有自己的“大数据”。虽然大多数电商企业仍处于起步阶段,但它们也可以收集数据,挖掘优秀人才帮助做出更加明智的决定。数据分析可以从小数据开始、效果立竿见影,随后发展成为大数据。即使一家小咖啡厅也能通过探寻顾客的饮用习惯、信用卡记录以及在线定位设置而建立自己的“大数据”。
尽管中小型企业还未完全配备企业先进的大数据线上工具和模式,但他们仍能从本公司历史数据中找出规律。例如,有了一两个月推广促销活动的历史数据后,服装电商公司就可以开始分析各个品类的销售表现情况,掌握一周或一个月内的最畅销和最滞销的销售品类信息,同时清楚了解长期内的平均增长率和复合增长率。这样的数据分析方法能提供产品销售额和产品销售表现的衡量指标,从而找出产品销售模式和趋势,做出下一步商业决策。这样将帮助企业实现更大的销售额,同时,无论有无市场推广活动,都可以监控产品的销售表现。
整合零售策略与大数据
从企业的角度来看,大数据的最大价值在于零售策略与大数据技术相结合。目前,由于消费者对于他们所希望的购物时间与购物方式的要求越来越高,现代零售业已变得愈发复杂。因此,零售商需要更加聪明地来服务顾客,更加灵活地选用库存和配送订单的地点,更加明确如何使用搜集到的顾客数据进行线上线下的交叉销售和追加销售。为了达成这一目的,零售商需要借助一个定制软件来制定以顾客为导向、基于数据的策略,以便于为顾客提供个性化服务。
此外,企业必须将零售策略与数据分析最大程度地相匹配,保证销售计划的实现。大数据最大的特点之一就是在于能够高速更新和处理信息。根据这一特性,商业数据一旦生成,就可以进行相应策略的制定,帮助公司赢得时间与空间调整市场策略,以最充分地发挥自身优势。这就像防洪预警:上游一旦有所警示,下游就应立即作出回应调整。例如,涉足线上的传统零售商,在一组货品的15分钟促销时间内,往往会准备三套应变策略,以确保商品按计划销售。 通过整合零售策略和大数据,企业将能够吸引更多消费者、为他们提供定制化服务,从而提升产品销售表现、增加销售额,进而扩大收益。
❽ 如何利用好大数据挖掘潜在用户
想要寻找潜在客户,就要借助合适的工具,提高潜在客户开发效率。
目前互联网时代,可以帮助开发客户的工具很多,数据也比较庞大。
在开发客户之前,首先要明白自己的目标客户群体在哪。
第一,传统数据基础累积及信息收集。
这一步主要通过互联网数据搜寻,找到自己想要的信息,这类信息主要包括目标客户的基本信息、联系方式(包括邮箱、电话、地址)、网站主页等等。
可以用来完成第一步的工具也很多,现在流通的免费的、又比较好用的有Email Finder、Minelead、Hotjar等等,Minelead.io是免费的,并且信息较为齐全。
使用任何公司域名进行搜索