Ⅰ 什么是数据库数据有什么特征数据和信息有什么关系
数据是用于荷载信息的物理符号。
数据的特征是:1,数据有型和值之分;2,数据受数据类型和取值范围的约束;3,数据有定性表示和定量表示之分;4,数据应具有载体和多种表现形式。
数据与信息的关系为:数据是信息的一种表现形式,数据通过能书写的信息编码表示信息。信息有多仲表现形式,它通过手势、眼神、声音或图形等方式表达,但是数据是信息的最佳表现形式。由于数据能够书写,因而它能够被记录、存储和处理,从中挖掘出更深层的信息。但是,数据不等于信息,数据只是信息表达方式中的一种。正确的数据可以表达信息,而虚假、错误的数据所表达的谬误,不是信息。
Ⅱ 大数据的特征有哪些
1.第一个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
2.第二个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
3.第三个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显着的特征。
Ⅲ 数据有哪些特征
特征一致性:针对企业内部不同的信息系统之间,要求主数据的关键特征在各个不用应用和系统中保持高度一致;
识别唯一性:在一个系统、一个平台,甚至一个企业范围内,同一主数据实体要求具有唯一的数据标识,即数据编码;
长期有效性:对主数据在系统中的存储保持长期有效,不建议物理删除;
业务稳定性:主数据本身的属性不会随业务过程的变化而被修改,可以参考融融网上更详细的案例说明。
Ⅳ 大数据的特征包括哪些
1、规模性
随着信息化技术的高速发展,数据开始爆发性增长。大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。
2、多样性
多样性主要体现在数据来源多、数据类型多和数据之间关联性强这三个方面。
数据来源多,企业所面对的传统数据主要是交易数据,而互联网和物联网的发展,带来了诸如社交网站、传感器等多种来源的数据。
而由于数据来源于不同的应用系统和不同的设备,决定了大数据形式的多样性。大体可以分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、图片、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。
数据类型多,并且以非结构化数据为主。传统的企业中,数据都是以表格的形式保存。而大数据中有70%-85%的数据是如图片、音频、视频、网络日志、链接信息等非结构化和半结构化的数据。
数据之间关联性强,频繁交互,如游客在旅游途中上传的照片和日志,就与游客的位置、行程等信息有很强的关联性。
3、高速性
这是大数据区分于传统数据挖掘最显着的特征。大数据与海量数据的重要区别在两方面:一方面,大数据的数据规模更大;另一方面,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
4、价值性
尽管企业拥有大量数据,但是发挥价值的仅是其中非常小的部分。大数据背后潜藏的价值巨大。由于大数据中有价值的数据所占比例很小,而大数据真正的价值体现在从大量不相关的各种类型的数据中。挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,并运用于农业、金融、医疗等各个领域,以期创造更大的价值。
Ⅳ 大数据特征包括哪些
大量,高速,多样,价值
Ⅵ 数据的特征
大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。(6)数据包含哪些特征扩展阅读:一、具体特征容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。种类(Variety):数据类型的多样性。速度(Velocity):指获得数据的速度。可变性(Variability):妨碍了处理和有效地管理数据的过程。真实性(Veracity):数据的质量。复杂性(Complexity):数据量巨大,来源多渠道。价值(value):合理运用大数据,以低成本创造高价值。二、运用洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。麻省理工学院利用手机定位数据和交通数据建立城市规划。梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。 医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。