Ⅰ 分布式数据库中,数据分片有哪些策略定义分片时必须遵守那些规则
答:数据
分片
有水平分片、垂直分片、导出分片和混合分片等四种方式。
数据分片时必须遵守三条规则:
完备性
条件,可重构条件,不相交条件。
Ⅱ 数据库都有哪些
常用数据库有mysql、oracle、sqlserver、sqlite等。mysql性能较好,适用于所有平台,是当前最流行的关系型数据库之一。sqlserver数据库具有扩展性和可维护性,且安全性较高,是比较全面的数据库。
Ⅲ 数据库系统有哪些组成部分
数据库系统组成部分包括数据库,硬件,软件和人员。
1、数据库(database,DB)是指长期存储在计算机内的,有组织,可共享的数据的集合。数据库中的数据按一定的数学模型组织、描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种用户共享。
2、硬件:构成计算机系统的各种物理设备,包括存储所需的外部设备。硬件的配置应满足整个数据库系统的需要。
3、软件:包括操作系统、数据库管理系统及应用程序。数据库管理系统(database management system,DBMS)是数据库系统的核心软件,是在操作系统的支持下工作,解决如何科学地组织和存储数据,如何高效获取和维护数据的系统软件。其主要功能包括:数据定义功能、数据操纵功能、数据库的运行管理和数据库的建立与维护。
4、人员:主要有4类。第一类为系统分析员和数据库设计人员:系统分析员负责应用系统的需求分析和规范说明,他们和用户及数据库管理员一起确定系统的硬件配置,并参与数据库系统的概要设计。数据库设计人员负责数据库中数据的确定、数据库各级模式的设计。第二类为应用程序员,负责编写使用数据库的应用程序。这些应用程序可对数据进行检索、建立、删除或修改。第三类为最终用户,他们利用系统的接口或查询语言访问数据库。第四类用户是数据库管理员(data base administrator,DBA),负责数据库的总体信息控制。DBA的具体职责包括:具体数据库中的信息内容和结构,决定数据库的存储结构和存取策略,定义数据库的安全性要求和完整性约束条件,监控数据库的使用和运行,负责数据库的性能改进、数据库的重组和重构,以提高系统的性能。
Ⅳ 数据库架构选型与落地,看这篇就够了
随着时间和业务的发展,数据库中的数据量增长是不可控的,库和表中的数据会越来越大,随之带来的是更高的 磁盘 、 IO 、 系统开销 ,甚至 性能 上的瓶颈,而单台服务器的 资源终究是有限 的。
因此在面对业务扩张过程中,应用程序对数据库系统的 健壮性 , 安全性 , 扩展性 提出了更高的要求。
以下,我从数据库架构、选型与落地来让大家入门。
数据库会面临什么样的挑战呢?
业务刚开始我们只用单机数据库就够了,但随着业务增长,数据规模和用户规模上升,这个时候数据库会面临IO瓶颈、存储瓶颈、可用性、安全性问题。
为了解决上述的各种问题,数据库衍生了出不同的架构来解决不同的场景需求。
将数据库的写操作和读操作分离,主库接收写请求,使用多个从库副本负责读请求,从库和主库同步更新数据保持数据一致性,从库可以水平扩展,用于面对读请求的增加。
这个模式也就是常说的读写分离,针对的是小规模数据,而且存在大量读操作的场景。
因为主从的数据是相同的,一旦主库宕机的时候,从库可以 切换为主库提供写入 ,所以这个架构也可以提高数据库系统的 安全性 和 可用性 ;
优点:
缺点:
在数据库遇到 IO瓶颈 过程中,如果IO集中在某一块的业务中,这个时候可以考虑的就是垂直分库,将热点业务拆分出去,避免由 热点业务 的 密集IO请求 影响了其他正常业务,所以垂直分库也叫 业务分库 。
优点:
缺点:
在数据库遇到存储瓶颈的时候,由于数据量过大造成索引性能下降。
这个时候可以考虑将数据做水平拆分,针对数据量巨大的单张表,按照某种规则,切分到多张表里面去。
但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈(单个服务器的IO有上限)。
所以水平分表主要还是针对 数据量较大 ,整体业务 请求量较低 的场景。
优点:
缺点:
四、分库分表
在数据库遇到存储瓶颈和IO瓶颈的时候,数据量过大造成索引性能下降,加上同一时间需要处理大规模的业务请求,这个时候单库的IO上限会限制处理效率。
所以需要将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。
分库分表能够有效地缓解单机和单库的 性能瓶颈和压力 ,突破IO、连接数、硬件资源等的瓶颈。
优点:
缺点:
注:分库还是分表核心关键是有没有IO瓶颈 。
分片方式都有什么呢?
RANGE(范围分片)
将业务表中的某个 关键字段排序 后,按照顺序从0到10000一个表,10001到20000一个表。最常见的就是 按照时间切分 (月表、年表)。
比如将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据被查询的概率变小,银行的交易记录多数是采用这种方式。
优点:
缺点:
HASH(哈希分片)
将订单作为主表,然后将其相关的业务表作为附表,取用户id然后 hash取模 ,分配到不同的数据表或者数据库上。
优点:
缺点:
讲到这里,我们已经知道数据库有哪些架构,解决的是哪些问题,因此, 我们在日常设计中需要根据数据的特点,数据的倾向性,数据的安全性等来选择不同的架构 。
那么,我们应该如何选择数据库架构呢?
虽然把上面的架构全部组合在一起可以形成一个强大的高可用,高负载的数据库系统,但是架构选择合适才是最重要的。
混合架构虽然能够解决所有的场景的问题,但是也会面临更多的挑战,你以为的完美架构,背后其实有着更多的坑。
1、对事务支持
分库分表后(无论是垂直还是水平拆分),就成了分布式事务了,如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价(XA事务);如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担(TCC、SAGA)。
2、多库结果集合并 (group by,order by)
由于数据分布于不同的数据库中,无法直接对其做分页、分组、排序等操作,一般应对这种多库结果集合并的查询业务都需要采用数据清洗、同步等其他手段处理(TIDB、KUDU等)。
3、数据延迟
主从架构下的多副本机制和水平分库后的聚合库都会存在主数据和副本数据之间的延迟问题。
4、跨库join
分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表(垂直),也无法join分表粒度不同的表(水平), 结果原本一次查询就能够完成的业务,可能需要多次查询才能完成。
5、分片扩容
水平分片之后,一旦需要做扩容时。需要将对应的数据做一次迁移,成本代价都极高的。
6、ID生成
分库分表后由于数据库独立,原有的基于数据库自增ID将无法再使用,这个时候需要采用其他外部的ID生成方案。
一、应用层依赖类(JDBC)
这类分库分表中间件的特点就是和应用强耦合,需要应用显示依赖相应的jar包(以Java为例),比如知名的TDDL、当当开源的 sharding-jdbc 、蘑菇街的TSharding等。
此类中间件的基本思路就是重新实现JDBC的API,通过重新实现 DataSource 、 PrepareStatement 等操作数据库的接口,让应用层在 基本 不改变业务代码的情况下透明地实现分库分表的能力。
中间件给上层应用提供熟悉的JDBC API,内部通过 sql解析 、 sql重写 、 sql路由 等一系列的准备工作获取真正可执行的sql,然后底层再按照传统的方法(比如数据库连接池)获取物理连接来执行sql,最后把数据 结果合并 处理成ResultSet返回给应用层。
优点
缺点
二、中间层代理类(Proxy)
这类分库分表中间件的核心原理是在应用和数据库的连接之间搭起一个 代理层 ,上层应用以 标准的MySQL协议 来连接代理层,然后代理层负责 转发请求 到底层的MySQL物理实例,这种方式对应用只有一个要求,就是只要用MySQL协议来通信即可。
所以用MySQL Navicat这种纯的客户端都可以直接连接你的分布式数据库,自然也天然 支持所有的编程语言 。
在技术实现上除了和应用层依赖类中间件基本相似外,代理类的分库分表产品必须实现标准的MySQL协议,某种意义上讲数据库代理层转发的就是MySQL协议请求,就像Nginx转发的是Http协议请求。
比较有代表性的产品有开创性质的Amoeba、阿里开源的Cobar、社区发展比较好的 Mycat (基于Cobar开发)等。
优点
缺点
JDBC方案 :无中心化架构,兼容市面上大多数关系型数据库,适用于开发高性能的轻量级 OLTP 应用(面向前台)。
Proxy方案 :提供静态入口以及异构语言的支持,适用于 OLAP 应用(面向后台)以及对分片数据库进行管理和运维的场景。
混合方案 :在大型复杂系统中存在面向C端用户的前台应用,也有面向企业分析的后台应用,这个时候就可以采用混合模式。
JDBC 采用无中心化架构,适用于 Java 开发的高性能的轻量级 OLTP 应用;Proxy 提供静态入口以及异构语言的支持,适用于 OLAP 应用以及对分片数据库进行管理和运维的场景。
ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由 Sharding-JDBC 、 Sharding-Proxy 和 Sharding-Sidecar (计划中)这3款相互独立的产品组成,他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、容器、云原生等各种多样化的应用场景。
ShardingSphere提供的核心功能:
Sharding-Proxy
定位为透明化的 数据库代理端 ,提供封装了 数据库二进制协议的服务端版本 ,用于完成对 异构语言的支持 。
目前已提供MySQL版本,它可以使用 任何兼容MySQL协议的访问客户端 (如:MySQL Command Client, MySQL Workbench, Navicat等)操作数据,对DBA更加友好。
向 应用程序完全透明 ,可直接当做MySQL使用。
适用于任何兼容MySQL协议的客户端。
Sharding-JDBC
定位为 轻量级Java框架 ,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为 增强版的JDBC驱动,完全兼容JDBC和各种ORM框架 。
以电商SaaS系统为例,前台应用采用Sharding-JDBC,根据业务场景的差异主要分为三种方案。
分库(用户)
问题解析:头部企业日活高并发高,单独分库避免干扰其他企业用户,用户数据的增长缓慢可以不分表。
拆分维度:企业ID分库
拆分策略:头部企业单独库、非头部企业一个库
分库分表(订单)
问题解析:订单数据增长速度较快,在分库之余需要分表。
拆分维度:企业ID分库、用户ID分表
拆分策略:头部企业单独库、非头部企业一个库,分库之后用户ID取模拆分表
单库分表(附件)
问题解析:附件数据特点是并发量不大,只需要解决数据增长问题,所以单库IO足以支撑的情况下分表即可。
拆分维度:用户ID分表
拆分策略:用户ID取模分表
问题一:分布式事务
分布式事务过于复杂也是分布式系统最难处理的问题,由于篇幅有限,后续会开篇专讲这一块内容。
问题二:分布式ID
问题三:跨片查询
举个例子,以用户id分片之后,需要根据企业id查询企业所有用户信息。
sharding针对跨片查询也是能够支持的,本质上sharding的跨片查询是采用同时查询多个分片的数据,然后聚合结果返回,这个方式对资源耗费比较大,特别是对数据库连接资源的消耗。
假设分4个数据库,8个表,则sharding会同时发出32个SQL去查询。一下子消耗掉了32个连接;
特别是针对单库分表的情况要注意,假设单库分64个表,则要消耗64个连接。如果我们部署了2个节点,这个时候两个节点同时查询的话,就会遇到数据库连接数上限问题(mysql默认100连接数)
问题四:分片扩容
随着数据增长,每个片区的数据也会达到瓶颈,这个时候需要将原有的分片数量进行增加。由于增加了片区,原先的hash规则也跟着变化,造成了需要将旧数据做迁移。
假设原先1个亿的数据,hash分64个表,现在增长到50亿的数据,需要扩容到128个表,一旦扩容就需要将这50亿的数据做一次迁移,迁移成本是无法想象的。
问题五:一致性哈希
首先,求出每个 服务器的hash值 ,将其配置到一个 0~2^n 的圆环上 (n通常取32)
其次,用同样的方法求出待 存储对象的主键 hash值 ,也将其配置到这个圆环上。
然后,从数据映射到的位置开始顺时针查找,将数据分布到找到的第一个服务器节点上。
一致性hash的优点在于加入和删除节点时只会影响到在哈希环中相邻的节点,而对其他节点没有影响。
所以使用一致性哈希在集群扩容过程中可以减少数据的迁移。
好了,这次分享到这里,我们日常的实践可能只会用到其中一种方案,但它不是数据库架构的全貌,打开技术视野,才能更好地把存储工具利用起来。
老规矩,一键三连,日入两千,点赞在看,年薪百万!
本文作者:Jensen
7年Java老兵,小米主题设计师,手机输入法设计师,ProcessOn特邀讲师。
曾涉猎航空、电信、IoT、垂直电商产品研发,现就职于某知名电商企业。
技术公众号 【架构师修行录】 号主,专注于分享日常架构、技术、职场干货,Java Goals:架构师。
交个朋友,一起成长!
Ⅳ 分布式数据库中,数据分片有哪些策略定义分片时必须遵守那些规则
以每24小时作为一份时间(而非自然日),根据用户的配置有两种工作模式:带状模式中,用户仅定义开始日期时,从开始日期(含)开始,每份时间1个分片地无限增加下去;环状模式中,用户定义了开始日期和结束日期时,以结束日期(含)和开始日期(含)之间的时间份数作为分片总数(分片数量固定),以类似取模的方式路由到这些分片里。
1. DBLE 启动时,读取用户在 rule.xml 配置的 sBeginDate 来确定起始时间
2. 读取用户在 rule.xml 配置的 sPartionDay 来确定每个 MySQL 分片承载多少天内的数据
3. 读取用户在 rule.xml 配置的 dateFormat 来确定分片索引的日期格式
4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的时间类型
5. 然后求分片索引值与起始时间的差,除以 MySQL 分片承载的天数,确定所属分片
1. DBLE 启动时,读取用户在 rule.xml 配置的起始时间 sBeginDate、终止时间 sEndDate 和每个 MySQL 分片承载多少天数据 sPartionDay
2. 根据用户设置,建立起以 sBeginDate 开始,每 sPartionDay 天一个分片,直到 sEndDate 为止的一个环,把分片串联串联起来
3. 读取用户在 rule.xml 配置的 defaultNode
4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的日期类型
5. 然后求分片索引值与起始日期的差:如果分片索引值不早于 sBeginDate(哪怕晚于 sEndDate),就以 MySQL 分片承载的天数为模数,对分片索引值求模得到所属分片;如果分片索引值早于 sBeginDate,就会被放到 defaultNode 分片上
与MyCat的类似分片算法对比
中间件
DBLE
MyCat
分片算法种类 date 分区算法 按日期(天)分片
两种中间件的取模范围分片算法使用上无差别
开发注意点
【分片索引】1. 必须是字符串,而且 java.text.SimpleDateFormat 能基于用户指定的 dateFormat 来转换成 java.util.Date
【分片索引】2. 提供带状模式和环状模式两种模式
【分片索引】3. 带状模式以 sBeginDate(含)起,以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,理论上分片数量可以无限增长,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)
【分片索引】4. 环状模式以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,以 sBeginDate(含)到 sEndDate(含)的时间长度除以单个分片长度得到恒定的分片数量,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)
【分片索引】5. 无论哪种模式,分片索引字段的格式化字符串 dateFormat 由用户指定
【分片索引】6. 无论哪种模式,划分不是以日历时间为准,无法对应自然月和自然年,且会受闰秒问题影响
运维注意点
【扩容】1. 带状模式中,随着 sBeginDate 之后的数据出现,分片数量的增加无需再平衡
【扩容】2. 带状模式没有自动增添分片的能力,需要运维手工提前增加分片;如果路由策略计算出的分片并不存在时,会导致失败
【扩容】3. 环状模式中,如果新旧 [sBeginDate,sEndDate] 之间有重叠,需要进行部分数据迁移;如果新旧 [sBeginDate,sEndDate] 之间没有重叠,需要数据再平衡
配置注意点
【配置项】1. 在 rule.xml 中,可配置项为 <propertyname="sBeginDate"> 、 <propertyname="sPartionDay"> 、 <propertyname="dateFormat"> 、 <propertyname="sEndDate"> 和 <propertyname="defaultNode">
【配置项】2.在 rule.xml 中配置 <propertyname="dateFormat">,符合 java.text.SimpleDateFormat 规范的字符串,用于告知 DBLE 如何解析sBeginDate和sEndDate
【配置项】3.在 rule.xml 中配置 <propertyname="sBeginDate">,必须是符合 dateFormat 的日期字符串
【配置项】4.在 rule.xml 中配置 <propertyname="sEndDate">,必须是符合 dateFormat 的日期字符串;配置了该项使用的是环状模式,若没有配置该项则使用的是带状模式
【配置项】5.在 rule.xml 中配置 <propertyname="sPartionDay">,非负整数,该分片策略以 86400000 毫秒(24 小时整)作为一份,而 sPartionDay 告诉 DBLE 把每多少份放在同一个分片
【配置项】6.在 rule.xml 中配置 <propertyname="defaultNode"> 标签,非必须配置项,不配置该项的话,用户的分片索引值没落在 mapFile 定义
Ⅵ 数据分片应遵守哪些基本原则数据分片有哪些基本类型和方法
链路层具有最大传输单元MTU这个特性,它限制了数据帧的最大长度,不同的网络类型都有一个上限值。以太网的MTU是1500,你可以用 netstat -i 命令查看这个值。如果IP层有数据包要传,而且数据包的长度超过了MTU,那么IP层就要对数据包进行分(fragmentation)操作,使每一片的长度都小于或等于MTU。我们假设要传输一个UDP数据包,以太网的MTU为1500字节,一般IP首部为20字节,UDP首部为8字节,数据的净荷(payload)部分预留是1500-20-8=1472字节。如果数据部分大于1472字节,就会出现分片现象。
分片(sharding)是数据库分区的一种,它将大型数据库分成更小、更快、更容易管理的部分,这些部分叫做数据碎片。碎片这个词意思就是整体的一小部分。
Jason Tee表示:“简言之,分片(sharding)数据库需要将数据库(database)分成多个没有共同点的小型数据库,且它们可以跨多台服务器传播。”
技术上来说,分片(sharding)是水平分区的同义词。在实际操作中,这个术语常用来表示让一个大型数据库更易于管理的所有数据库分区。
分片(sharding)的核心理念基于一个想法:数据库大小以及数据库上每单元时间内的交易数呈线型增长,查询数据库的响应时间(response time)以指数方式增长。
另外,在一个地方创建和维护一个大型数据库的成本会成指数增长,因为数据库将需要高端的计算机。相反地,数据碎片可以分布到大量便宜得多的商用服务器上。就硬件和软件要求而言,数据碎片相对来说没什么限制。
在某些情况中,数据库分片(sharding)可以很简单地完成。按地理位置拆分用户数据库就是一个常见的例子。位于东海岸的用户被分到一台服务器上,在西海岸的用户被分在另一台服务器上。假设没有用户有多个地理位置,这种分区很易于维护和创建规则。
但是数据分片(sharding)在某些情况下会是更为复杂的过程。例如,一个数据库持有很少结构化数据,分片它就可能非常复杂,并且结果碎片可能会很难维护。
分片过程
对于发送端发送的每份IP数据报来说,其标识字段都包含一个唯一值。该值在数据报分片时被复制到每个片中。标志字段用其中一个比特来表示“更多的片”。除了最后一片外,其他每个组成数据报的片都要把该比特置1。片偏移字段指的是该片偏移原始数据报开始处的位置。另外,当数据报被分片后,每个片的总长度值要改为该片的长度值。
最后,标志字段中有一个比特称作“不分片”位。如果将这一比特置1,IP将不对数据报进行分片。相反把数据报丢弃并发送一个ICMP差错报文给起始端。
当IP数据报被分片后,每一片都成为一个分组,具有自己的IP首部,并在选择路由时与其他分组独立。这样,当数据报的这些片到达目的端时有可能会失序,但是在IP首部中有足够的信息让接收端能正确组装这些数据报片。
Ⅶ 请问数据库有哪些种类呢
数据库通常分为:
层次式数据库、网络式数据库和关系式数据库三种。
而不同的数据库是按不同的数据结构来联系和组织的。
数据库有类型之分,是根据数据模型划分的。目前成熟地应用在数据库系统中的数据模型有:层次模型、网壮模型和关系模型。
一、层次模型:
层次模型是用树结构表示记录类型及其联系的。
树结构的基本特点是:
1、有且仅有一个结点无父结点;
2、其它结点有且有一个父结点。
在层次模型中,树的结点是记录型。上一层记录型和下一层记录型的联系是1:n的。
层次模型就象下面我们给出的一棵倒立的树。
注意:在层次式数据库中查找记录,必须指定存取路径。这种关系模型不支持m:n联系。
二、网状模型:
网状模型中结点间的联系不受层次限制,可以任意发生联系,所以她的结构是结点的连通图。
网状模型结构的特点是:
1、有一个以上结点无父结点;
2、至少有一个结点有多于一个父结点。
注意:虽然网状模型能反映各种复杂的关系,但网状模型在具体实现上,只支持1:n联系,对
于m:n联系可将其转化为1:n联系。
三、关系模型:
关系模型的本质就是用若干个二维表来表示实体及其联系。
关系是通过关系名和属性名定义的。一个关系可形式化表示为:
R(A1,A2,A3,…,Ai,…)
其中:R为关系名,Ai为关系的属性名。
目前常用的数据库管理系统有:
ACCESS、SQL Server、 Oracle、MySQL、FoxPro和Sybase等。
ACCESS 是美国Microsoft公司于1994年推出的微机数据库管理系统.它具有界面友好、易学易用、开发简单、接口灵活等特点,是典型的新一代桌面数据库管理系统。
Oracle公司是全球最大的信息管理软件及服务供应商,成立于1977年,总部位于美国加州 Redwood shore。Oracle提供的完整的电子商务产品和服务包括: 用于建立和交付基于Web的Internet平台; 综合、全面的具有Internet能力的商业应用; 强大的专业服务,帮助用户实施电子商务战略,以及设计、定制和实施各种电子商务解决方案...
SQL是英文Structured Query Language的缩写,意思为结构化查询语言。SQL语言的主要功能就是同各种数据库建立联系,进行沟通。按照ANSI(美国国家标准协会)的规定,SQL被作为关系型数据库管理系统的标准语言。SQL语句可以用来执行各种各样的操作,例如更新数据库中的数据,从数据库中提取数据等。目前,绝大多数流行的是关系型数据库管理系统。
内容来源网络,仅供参考!
Ⅷ 请问数据库有哪些种类呢
数据库共有3种类型,为关系数据库、非关系型数据库和键值数据库。
1、关系数据库
MySQL、MariaDB(MySQL的代替品,英文维基网络从MySQL转向MariaDB)、Percona Server(MySQL的代替品·)、PostgreSQL、Microsoft Access、Microsoft SQL Server、Google Fusion Tables、FileMaker、Oracle数据库、Sybase、dBASE、Clipper、FoxPro、foshub。
几乎所有的数据库管理系统都配备了一个开放式数据库连接(ODBC)驱动程序,令各个数据库之间得以互相集成。
2、非关系型数据库(NoSQL)
BigTable(Google)、Cassandra、MongoDB、CouchDB。
3、键值(key-value)数据库
Apache Cassandra(为Facebook所使用):高度可扩展、Dynamo、LevelDB(Google)。
(8)数据库有哪些分片扩展阅读:
数据库模型:对象模型、层次模型(轻量级数据访问协议)、网状模型(大型数据储存)、关系模型、面向对象模型、半结构化模型、平面模型(表格模型,一般在形式上是一个二维数组。如表格模型数据Excel)。
数据库的架构可以大致区分为三个概括层次:内层、概念层和外层。
Ⅸ 数据库分类有哪些
根据数据库的架构和数据组织原理进行分类
1、早期根据数据库的组织数据的存储模型分类
●层次数据库:基于层次的数据结构(数据分层)
●网状数据库:基于网状的数据结构(数据网络)
●关系数据库:基于关系模型的数据结构(二维表)
2、现在较多根据实际数据管理模型分类(存储介质)
●关系型数据库:基于关系模型的数据结构(二维表)通常存储在磁盘
●非关系型数据库:没有具体模型的数据结构(键值对)通常存储在内存