A. 数据管理包括哪些内容
数据管理是规划、控制和提供数据及信息资产的一组业务职能,包括开发执行监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据和信息资产的价值。
B. 小学收集数据的方法有哪些
小学收集数据的方法有调查法、观察法、文献检索、实验方法、网络信息收集。
1、调查法:调查方法一般分为普查和抽样调查两大类。
2、观察法主要包括两个方面:一是对人的行为的观察,二是对客观事物的观察。
3、文献检索就是从浩繁的文献中检索出所需的信息的过程。
4、实验方法能通过实验过程获取其他手段难以获得的信息或结论。实验方法也有多种形式,如实验室实验、现场实验、计算机模拟实验、计算机网络环境下人机结合实验等。现代管理科学中新兴的管理实验,现代经济学中正在形成的实验经济学中的经济实验,实质上就是通过实验获取与管理或经济相关的信息。
5、网络信息收集:网络信息是指通过计算机网络发布、传递和存储的各种信息。收集网络信息的最终目标是给广大用户提供网络信息资源服务,整个过程经过网络信息搜索、整合、保存和服务四个步骤。
C. 数据管理员的主要工作内容有哪些
数据员每日负责依据数据剖析计划方案开展数据剖析,在明确时间内递交给市场调研工作人员;开展高级的数据数据分析;企业入录工作人员的管控和绩效考评;及其对编号工作人员的领域常识和问卷调查构造的学习培训;入录数据库的开设,数据的校检,数据库的逻辑性查错,对一部分问卷调查的核查等工作。
D. 教学基础数据管理包含哪些内容
教学基础数据管理,主要包括教师基本信息管理、教学信息管理、科研信息管理三个方面的内容。
1、教师基本信息管理。包括教师姓名、性别、出生年月、学历专业等基本信息,教师工作经历信息,教师户籍、联系方式等信息。
2、教学信息管理。包括教师授课查询(可根据教师姓名、学期和课程名称查询教师的授课情况),教师信息管理,课程信息管理。
3、科研信息管理。包括科研院所的基本情况,科研机构(含高校)的科研成果,科研项目获奖情况,日常科研活动信息。同时对科研活动科研人员进行自动绩效考核。
E. 数据资产管理包括哪些内容
数据资产管理包含数据标准管理、数据模型管理、元数据管理、主数据管理、数据质量管理、数据安全管理、数据价值管理、数据共享管理等8个管理。
1、数据标准是指保障数据内外部使用和交换一致性和准确性、规范性的约束,数据标准管理关键活动的第一个是理解数据标准化的需求,即任何一个管理活动都要和企业的战略规划、企业的需求紧密地结合。
数据标准管理的第二个关键活动就是制定数据标准的体系与规范,第三个是制定相应的管理办法以及实施流程要求,第四个是建立一些数据标准的管理工具。
2、数据模型是现实世界数据特征的抽象。数据模型包括三个:
概念模型,概念模型是面向用户与客观实践的,构建概念模型的本身与数据库或者数据仓库的架构搭建没有特别多的关系。
在建立了概念模型的基础之上可以构建逻辑模型,逻辑模型是面向业务的,用于指导一些数据库系统的实现。
物理模型,物理模型是基于逻辑模型,面向计算机物理表示,考虑了操作系统、硬件模型等等,描述数据在存储介质上的结构。
3、元数据管理,以二维表为例,想描述一个二维表信息的话,可以描述它每一行、每一页,也可以提取这个表中的一些抽象化或者是更高层次的信息,比如说这些表的字段或者表的结构以及表的大小等等,这样就对这个表格进行了数据的描述。
可以帮助实现关键信息的追踪与记录,快速掌握元数据的变化可能带来的风险。
元数据非常关键的运用是进行血缘分析和影响分析,通过进行血缘分析和影响分析可以了解数据走向,知道数据是从哪里来到哪里去,也可以构建数据地图和数据目录自动提取元数据信息,了解这个企业目前拥有数据资产情况。
4、主数据管理,比如说供应商数据、物料数据、客户数据、员工数据。主数据管理可以使企业跨系统使用一致的和共享的数据,从而可以降低成本和复杂度,来支撑跨部门、跨系统数据融合的应用。
主数据的关键活动包括识别主数据、定义和维护主数据的架构以及实现数据库与主数据库的同步。
主数据管理在很多行业成为企业开展数据资产管理的切入点。通过对主数据的梳理和管理,将建立数据的一个参考,为数据标准后期的管理节约很多的人力和物力。
5、数据质量管理,可以帮助企业获得一些干净以及结构清晰的数据,进而可以提高数据应用和服务的水平。数据质量好坏的衡量指标一般包括完整性、规范性、一致性、准确性、唯一性、时效性。
在定义数据质量管理时应该将管理过程中成本考虑进去。同样还需要和企业的业务需求紧密结合找到平衡点。数据质量管理其他的关键活动包括持续的测量、监控数据的质量、分析数据质量产生问题的根本原因,以及制定数据质量的改善方案,监控数据质量管理操作和绩效等等。
6、数据安全管理,主要是对数据设定一些安全等级来评估数据的安全风险,来完善数据安全管理相关的技术规范,通过对数据进行全生命周期的安全管控,包括数据的生成、存储、使用、共享、销毁等实现事中前可管、事中可控、事后可查。
7、数据价值管理,通过从数据的成本和数据的应用价值两个方面的度量,使企业能够最优化、最大化释放数据的价值。成本价值计量可以从采集、存储、计算成本进行评估,也可以从运维成本评估,还可以从数据的活性以及数据质量应用场景的经济性等角度进行评估。
数据的成本和数据价值的评估维度主要和自己的应用场景和业务需求挂钩即可。数据成本与数据价值典型评价方法包括成本法、收益法和市场化。
8、数据共享管理,包括数据内部共享、外部流通、对外开放。数据共享管理的关键活动就是包括定义数据资产运营指标、设计管理方案等。
F. 信息系统中,数据管理包括什么
数据的什么管理,比如,数据安全管理、数据统计管理、数据分析管理、数据硬件管理等等。具体点了,数据管理的范围大太。
G. 数据管理包括哪些内容
数据管理的主要内容
国际数据管理协会(Data Management Association,简称“DAMA”),由全球的数据管理爱好者们组成,随着众多专家倾注热情与专业的编着,《DAMA数据管理知识体系指南(第2版)》横空出世,这本书明确地定义了数据管理体系建设的完整知识体系,成为数据管理知识体系建设指明灯般的存在。《DAMA-DMBOK2职能框架》主要介绍了数据管理知识体系中11个主要的数据管理职能:
(5)数据安全:保障数据的获取和使用。
(6)数据集成和互操作:数据备份、数据共享、数据在应用内数据整合移动的相关过程。
(7)文档和内容管理:主要管理非结构化数据和数据的整个生命周期。
(8)参考数据和主数据管理:核心共享的业务数据,真实、准确地在各系统内一致使用。
(9)数据仓库和商务智能:通过流程管理支持数据,通过分析报告获取数据价值。
(10)元数据管理:通过规划控制,访问定模型、数据流的高质量元数据信息。
(11)数据质量管理:通过质量管理技术,提高数据的适用性。
H. 数据库管理主要分为哪些内容
认识数据库管理数据库管理(DatabaseManagement)是有关建立、存储、修改和存取数据库中信息的技术,是指为保证数据库系统的正常运行和服务质量,有关人员需对其进行的技术管理工作。
负责这些技术管理工作的个人或集体称为数据库管理员(DatabaseAdministrator,DBA)。数据库管理的主要内容有数据库的调优、数据库的重组、数据库的重构、数据库的安全管控、报错问题的分析和汇总以及处理、数据库数据的日常备份。数据库管理员数据库管理员,是从事管理和维护数据库管理系统的相关工作人员的统称,其属于运维工程师的一个分支,主要负责业务数据库从设计、测试到部署交付的全生命周期管理。数据库管理员的核心目标是保证数据库管理系统的稳定性、安全性、完整性和高性能。
在国外,也有公司把数据库管理员称作数据库工程师(DatabaseEngineer),两者的工作内容基本相同,都是保证数据库服务24小时的稳定高效运转,但是需要区分一下数据库管理员和数据库开发工程师(DatabaseDeveloper):((1)数据库开发工程师的主要职责是设计、开发数据库管理系统和数据库应用软件系统,侧重于软件研发;
(2)数据库管理员的主要职责是运维(运营和维护)和管理数据库管理系统,侧重于运维管理。
数据库管理员在不同的公司不同的发展阶段有着不同的职责与定位。一般意义上的数据库管理员只是负责数据库的运营和维护,包括数据库的安装、监控、备份、恢复等基本工作,但是广义上的数据库管理员职责比这个大得多,需要覆盖产品从需求设计、测试到交付上线的整个生命周期,在此过程中不仅要负责数据库管理系统的搭建和运维,还要参与前期的数据库设计、中期的数据库测试和后期的数据库容量管理和性能优化。
I. 数据治理包括哪些方面
从技术实施角度看,数据治理包含“理”“采”“存”“管”“用”这五个步骤,即业务和数据资源梳理、数据采集清洗、数据库设计和存储、数据管理、数据使用。
数据资源梳理:数据治理的第一个步骤是从业务的视角厘清组织的数据资源环境和数据资源清单,包含组织机构、业务事项、信息系统,以及以数据库、网页、文件和 API 接口形式存在的数据项资源,本步骤的输出物为分门别类的数据资源清单。
数据采集清洗:通过可视化的 ETL 工具(例如阿里的 DataX,Pentaho Data Integration)将数据从来源端经过抽取 (extract)、转换 (transform)、加载 (load) 至目的端的过程,目的是将散落和零乱的数据集中存储起来。
基础库主题库建设:一般情况下,可以将数据分为基础数据、业务主题数据和分析数据。基础数据一般指的是核心实体数据,或称主数据,例如智慧城市中的人口、法人、地理信息、信用、电子证照等数据。主题数据一般指的是某个业务主题数据,例如市场监督管理局的食品监管、质量监督检查、企业综合监管等数据。而分析数据指的是基于业务主题数据综合分析而得的分析结果数据,例如市场监督管理局的企业综合评价、产业区域分布、高危企业分布等。那么基础库和主题库的建设就是在对业务理解的基础上,基于易存储、易管理、易使用的原则抽像数据存储结构,说白了,就是基于一定的原则设计数据库表结构,然后再根据数据资源清单设计数据采集清洗流程,将整洁干净的数据存储到数据库或数据仓库中。
元数据管理:元数据管理是对基础库和主题库中的数据项属性的管理,同时,将数据项的业务含义与数据项进行了关联,便于业务人员也能够理解数据库中的数据字段含义,并且,元数据是后面提到的自动化数据共享、数据交换和商业智能(BI)的基础。需要注意的是,元数据管理一般是对基础库和主题库中(即核心数据资产)的数据项属性的管理,而数据资源清单是对各类数据来源的数据项的管理。
血缘追踪:数据被业务场景使用时,发现数据错误,数据治理团队需要快速定位数据来源,修复数据错误。那么数据治理团队需要知道业务团队的数据来自于哪个核心库,核心库的数据又来自于哪个数据源头。我们的实践是在元数据和数据资源清单之间建立关联关系,且业务团队使用的数据项由元数据组合配置而来,这样,就建立了数据使用场景与数据源头之间的血缘关系。 数据资源目录:数据资源目录一般应用于数据共享的场景,例如政府部门之间的数据共享,数据资源目录是基于业务场景和行业规范而创建,同时依托于元数据和基础库主题而实现自动化的数据申请和使用。
质量管理:数据价值的成功发掘必须依托于高质量的数据,唯有准确、完整、一致的数据才有使用价值。因此,需要从多维度来分析数据的质量,例如:偏移量、非空检查、值域检查、规范性检查、重复性检查、关联关系检查、离群值检查、波动检查等等。需要注意的是,优秀的数据质量模型的设计必须依赖于对业务的深刻理解,在技术上也推荐使用大数据相关技术来保障检测性能和降低对业务系统的性能影响,例如 Hadoop,MapRece,HBase 等。
商业智能(BI):数据治理的目的是使用,对于一个大型的数据仓库来说,数据使用的场景和需求是多变的,那么可以使用 BI 类的产品快速获取需要的数据,并分析形成报表,像派可数据就属于专业的BI厂商。
数据共享交换:数据共享包括组织内部和组织之间的数据共享,共享方式也分为库表、文件和 API 接口三种共享方式,库表共享比较直接粗暴,文件共享方式通过 ETL 工具做一个反向的数据交换也就可以实现。我们比较推荐的是 API 接口共享方式,在这种方式下,能够让中心数据仓库保留数据所有权,把数据使用权通过 API 接口的形式进行了转移。API 接口共享可以使用 API 网关实现,常见的功能是自动化的接口生成、申请审核、限流、限并发、多用户隔离、调用统计、调用审计、黑白名单、调用监控、质量监控等等。