导航:首页 > 数据处理 > 数据时代依靠什么

数据时代依靠什么

发布时间:2022-12-27 20:01:10

A. 数据时代的大数据思维特征,主要有哪些

1、大数据思维的整体性



近年来,我们进入大数据时代的同时,一定程度上带动着大数据思维由一元思维升级至二元思维,现在根据人类思维的转变模式进行分析,其依然进行至多元思维状态,即追求和谐稳定社会的模式。但是研究大数据思维的发展进程发现,大数据的二元思维模式是一种高效率并适合现今社会发展的思维模式,其追求效率性、相关性、概率性,为创新发展提高了效率。



根据当下社会的需求及其社会的快节奏发展,大数据思维已然在各领域发展处于主导地位,由其基本特征层面分析,大数据思维主要特征为整体性。整体性的理论基础在于人类认识世界的能力在自然观中的不断变革而体现,现今社会通过人类对于整体数据的整合及分析能力进行体现。



2、大数据思维的互联性



相对微观层面分析大数据思维特征,较为典型的为切合现今社会及科技发展的量化互联思维,量化为具体或明确目标的一种表述。而互联代表着两种事物间的连接,其作为大数据思维微观层面的一种表达方式,更加说明大数据思维的重要性。知名投资人孙正义对于大数据时代的发展提出:“要么数字化,要么死亡。”直接地表达出大数据思维目前所处的地位。



研究发现,数字信息成为时代发展的代表已成为必然趋势,而量化思维为数字化特征带来的必然思维结果。换言之,量化可以解释为共性语言描述和解释世界的一种方式。



3、大数据思维的价值性



由大数据思维的本质进行分析,大数据思维具有价值化特征。大数据时代信息的不断整合及分析已然使得信息及数据量化及互联转变为多维度的发展状态。



换句话说,大数据思维渗透至各个领域及行业的不同维度是大数据发展的初始动机和直接目的,现今社会看待其价值化特征将其价值性总结为大数据思维的本质,同时,万物的量化互联性及其整体性使得其价值性影响了多维度的发展,由此凸显了数据及大数据思维的创造性及重要性。



关于数据时代的大数据思维特征,主要有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。


以上是小编为大家分享的关于数据时代的大数据思维特征,主要有哪些?的相关内容,更多信息可以关注环球青藤分享更多干货

B. 现在总说大数据时代,到底是什么意思,指的是什么。对我们的生活会有多大影响,详解

大数据可以简单理解为:

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。简单的说就是超级存储,海量数据上传到云平台后,大数据就会对数据进行深入分析和挖掘。

进一步简单的说,大数据基本要具备以下三点:

1)有海量的数据;

2)有对海量数据进行挖掘的需求;

3)有对海量数据进行挖掘的技术和工具(比如常见的有hadoop、spark等)。

用这些数据做:数据采集、数据存储、数据清洗、数据分析、数据可视化

大数据的应用对象可以简单的分为给人类提供辅助服务,以及为智能体提供决策服务。

大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合。具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。通俗地讲“大数据就像互联网+,可以应用在各行各业",如电信、金融、教育、医疗、军事、电子商务甚至政府决策等。

C. 在大数据时代,数据拥有者的商业模式有哪些

在大数据成为趋势,成为国家战略的今天,如何最大限度发挥大数据的价值成为人们思考的问题。无论是对于互联网企业、电信运营商还是数量众多的初创企业而言,大数据的变现显得尤为重要。谁最先一步找到密码,谁就能够抢占市场,赢得发展。在探索大数据商业模式的同时,大数据正加速在各行各业的应用,大数据不仅为人们的购物、出行、交友提供了帮助,甚至还在高考这样重要的事件中发挥作用。

大数据产业具有无污染、生态友好、低投入高附加值特点,对于我国转变过去资源因素型经济增长方式、推进“互联网+”行动计划、实现国家制造业30年发展目标有战略意义。前几年,国内大数据产业讨论较多、落地较少,商业模式处于初探期,行业处于两种极端:一种是过热的浮躁带来了一定的泡沫和产业风险;一种是怀疑大数据只是炒作,依然坚持传统管理理念、经营模式。但是进入2015年之后,大数据产业告别了泡沫,进入更务实的发展阶段,从产业萌芽期进入了成长期。当前,如何将大数据变现成为业界探索的重要方向。

B2B大数据交易所

国内外均有企业在推动大数据交易。目前,我国正在探索“国家队”性质的B2B大数据交易所模式。

2014年2月20日,国内首个面向数据交易的产业组织—中关村大数据交易产业联盟成立,同日,中关村数海大数据交易平台启动,定位大数据的交易服务平台。2015年4月15日,贵阳大数据交易所正式挂牌运营并完成首批大数据交易。贵阳大数据交易所完成的首批数据交易卖方为深圳市腾讯计算机系统有限公司、广东省数字广东研究院,买方为京东云平台、中金数据系统有限公司。2015年5月26日,在2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会上,贵阳大数据交易所推出《2015年中国大数据交易白皮书》和《贵阳大数据交易所702公约》,为大数据交易所的性质、目的、交易标的、信息隐私保护等指明了方向,奠定了大数据金矿变现的产业基础。

咨询研究报告

国内咨询报告的数据大多来源于国家统计局等各部委的统计数据,由专业的研究员对数据加以分析、挖掘,找出各行业的定量特点进而得出定性结论,常见于“市场调研分析及发展咨询报告”,如“2015~2020年中国通信设备行业市场调研分析及发展咨询报告”、“2015~2020年中国手机行业销售状况分析及发展策略”、“2015年光纤市场分析报告”等,这些咨询报告面向社会销售,其实就是O2O的大数据交易模式。

各行各业的分析报告为行业内的大量企业提供了智力成果、企业运营和市场营销的数据参考,有利于市场优化供应链,避免产能过剩,维持市场稳定。这些都是以统计部门的结构化数据和非结构化数据为基础的专业研究,这就是传统的一对多的行业大数据商业模式。

数据挖掘云计算软件

云计算的出现为中小企业分析海量数据提供了廉价的解决方案,SaaS模式是云计算的最大魅力所在。云计算服务中SaaS软件可以提供数据挖掘、数据清洗的第三方软件和插件。

业内曾有专家指出,大数据=海量数据+分析软件+挖掘过程,通过强大的各有千秋的分析软件来提供多样性的数据挖掘服务就是其盈利模式。国内已经有大数据公司开发了这些架构在云端的大数据分析软件:它集统计分析、数据挖掘和商务智能于一体,用户只需要将数据导入该平台,就可以利用该平台提供的丰富算法和模型,进行数据处理、基础统计、高级统计、数据挖掘、数据制图和结果输出等。数据由系统统一进行管理,能够区分私有和公有数据,可以保证私有数据只供持有者使用,同时支持多样数据源接入,适合分析各行各业的数据,易学好用、操作界面简易直观,普通用户稍做了解即可使用,同时也适合高端用户自己建模进行二次开发。

大数据咨询分析服务

机构及企业规模越大其拥有的数据量就越大,但是很少有企业像大型互联网公司那样有自己的大数据分析团队,因此必然存在一些专业型的大数据咨询公司,这些公司提供基于管理咨询的大数据建模、大数据分析、商业模式转型、市场营销策划等,有了大数据作为依据,咨询公司的结论和咨询成果更加有说服力,这也是传统咨询公司的转型方向。比如某国外大型IT研究与顾问咨询公司的副总裁在公开场合曾表示,大数据能使贵州农业节省60%的投入,同时增加80%的产出。该公司能做出这样的论断当然是基于其对贵州农业、天气、土壤等数据的日积月累以及其建模分析能力。

政府决策咨询智库

党的十八届三中全会通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出,加强中国特色新型智库建设,建立健全决策咨询制度。这是中共中央文件首次提出“智库”概念。

近几年,一批以建设现代化智库为导向、以服务国家发展战略为目标的智库迅速成立,中国智库数量从2008年的全球第12位跃居当前第2位。大数据是智库的核心,没有了数据,智库的预测和分析将为无源之水。在海量信息甚至泛滥的情况下,智库要提升梳理、整合信息的能力必然需要依靠大数据分析。

研究认为,93%的行为是可以预测的,如果将事件数字化、公式化、模型化,其实多么复杂的事件都是有其可以预知的规律可循,事态的发展走向是极易被预测的。可见,大数据的应用将不断提高政府的决策效率和决策科学性。

自有平台大数据分析

随着大数据的价值被各行各业逐渐认可,拥有广大客户群的大中型企业也开始开发、建设自有平台来分析大数据,并嵌入到企业内部的ERP系统信息流,由数据来引导企业内部决策、运营、现金流管理、市场开拓等,起到了企业内部价值链增值的作用。

在分析1.0时代,数据仓库被视作分析的基础。2.0时代,公司主要依靠Hadoop集群和NoSQL数据库。3.0时代的新型“敏捷”分析方法和机器学习技术正在以更快的速度来提供分析结果。更多的企业将在其战略部门设置首席分析官,组织跨部门、跨学科、知识结构丰富、营销经验丰富的人员进行各种类型数据的混合分析。

大数据投资工具

证券市场行为、各类指数与投资者的分析、判断以及情绪都有很大关系。2002年诺贝尔经济学奖授予了行为经济学家卡尼曼和实验经济学家史密斯,行为经济学开始被主流经济学所接受,行为金融理论将心理学尤其是行为科学理论融入金融中。现实生活中拥有大量用户数据的互联网公司将其论坛、博客、新闻报道、文章、网民用户情绪、投资行为与股票行情对接,研究的是互联网的行为数据,关注热点及市场情绪,动态调整投资组合,开发出大数据投资工具,比如大数据类基金等。这些投资工具直接将大数据转化为投资理财产品。

定向采购线上交易平台

数据分析结果很多时候是其他行业的业务基础,国内目前对实体经济的电子商务化已经做到了B2C、C2C、B2B等,甚至目前O2O也越来越流行,但是对于数据这种虚拟商品而言,目前还没有具体的线上交易平台。比如服装制造企业针对某个省份的市场,需要该市场客户的身高、体重的中位数和平均数数据,那么医院体检部门、专业体检机构就是这些数据的供给方。通过获取这些数据,服装企业将可以开展精细化生产,以更低的成本生产出贴合市场需求的服装。假想一下,如果有这样一个“大数据定向采购平台”,就像淘宝购物一样,可以发起买方需求,也可以推出卖方产品,通过这样的模式,外加第三方支付平台,“数据分析结论”这种商品就会悄然而生,这种商品不占用物流资源、不污染环境、快速响应,但是却有“供”和“需”双方巨大的市场。而且通过这种平台可以保障基础数据安全,大数据定向采购服务平台交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。所有卖方、买方都要实名认证,建立诚信档案机制并与国家信用体系打通。

非营利性数据征信评价机构

在国家将公民信息保护纳入刑法范围之前,公民个人信息经常被明码标价公开出售,并且形成了一个“灰色产业”。为此,2009年2月28日通过的刑法修正案(七)中新增了出售、非法提供公民个人信息罪,非法获取公民个人信息罪。该法条中特指国家机关或者金融、电信、交通、教育、医疗等单位的工作人员,不得将公民个人信息出售或非法提供给他人。而公民的信息在各种考试中介机构、房产中介、钓鱼网站、网站论坛依然在出售,诈骗电话、骚扰电话、推销电话在增加运营商话务量的同时也在破坏整个社会的信用体系和公民的安全感。

虽然数据交易之前是交易所规定的经过数据清洗的数据,但是交易所员工从本质上是无法监控全国海量的数据的。数据清洗只是对不符合格式要求的数据进行清洗,主要有不完整的数据、错误的数据、重复的数据三大类。因此,建立非营利性数据征信评价机构是非常有必要的,将数据征信纳入企业及个人征信系统,作为全国征信系统的一部分,避免黑市交易变成市场的正常行为。

除了征信评价机构之外,未来国家公共安全部门也许会成立数据安全局,纳入网络警察范畴,重点打击将侵犯企业商业秘密、公民隐私的基础数据进行数据贩卖的行为。

结语:

大数据已经从论坛串场、浮躁的观点逐步走向国家治理体系建设、营销管理、生产管理、证券市场等方面,其商业模式也多种多样。市场经验表明,存在买卖就存在商品经济,具体哪种商业模式占主流将由市场决定。而最终的事实将证明,大数据交易商品经济必然成为“互联网+”的重要组成部分。

D. 什么是大数据时代

大数据时代是数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。

“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在,却因为来自互联网和信息行业的发展而引起人们关注。

进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数大数据时代来临据,并命名与之相关的技术发展与创新。

大数据时代已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。

(4)数据时代依靠什么扩展阅读:

大数据时代特征:

1、数据量大(Volume)

第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

2、类型繁多(Variety)

第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

3、价值密度低(Value)

第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。

4、速度快、时效高(Velocity)

第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显着的特征。

E. 大数据在未来生活中的运用

哈尔滨理工大学孙名松谈大数据在高校智慧校园中的应用


摘要: 2月15日,哈尔滨理工大学软件学院院长、教授孙名松在CIO时代APP微讲座栏目作了题为《大数据在高校智慧校园中的应用》的主题分享,

关键词:

CIO时代APP
微讲座




一、小数据时代与大数据时代

“数据(data)”在拉丁文里的意思是“已知”,也可以理解为“存在”。所以“数据”就是“存在”,“大数据”就是“大存在”。研究大数据,就是研究大存在,亦即研究一切物质、一切行为、一切思想,以及人类自身。

数据充斥并改造着人们的生活、工作。数据化是指把现象转变为可指标分析的量化形式的过程,其中包含对世界的梳理、理解,并形成可保存的经验。计算和记录共同促成了数据的产生,是数据化的根基。而数字化是把模拟数据转换成0、1表示的二进制码,方便人类使用现代技术对数据进行更好的处理。数据化是一种思想,数字化是一种手段;数据化古而有之,数字化方兴未艾。

小数据时代依靠随机采样,其原则是以最少的数据获得最多的信息。但如此,则无法了解一些微观细节,不利于对某些特定子类进行分析。而“参差不齐是世界的本质”,细节缺失将会影响到对整个自然活动、人类活动的探索与研究。此外,随机采样以研究者的理论前提为设计基础,只能对已遴选的问题进行解答,而难以虑及其他问题。也就是说小数据时代是以极其有限的信息面对有“偏见”的问题。

大数据时代,意味着将世界数据化,意味着世界的本质就是信息。世界不仅被看成一串事件的组合,更被看做信息的集合,数据的集合。这是世界观的深刻变革:人类具备以往认识并处理事件的经验而不盲从于经验,人类采集“数据”但更明确“所见、所思、所得”皆为“数据”,我们生活在数据的海洋之中,我们自身即为数据。

以上,从小数据时代到大数据时代,伴随或产生了以下几种转变与认识:

1、意识到“样本”等于总体。用更大、更全、更综合的态度来观察、理解、关照世界。

2、大数据对于精确性的要求降低。在小数据时代,因为数据少,所以对数据的精确度要求非常之高,而当大量数据出现时或者要求数据量大时,必然需要接受数据的纷繁复杂。

3、要意识到数据错误并不是大数据的固有特性,而是需要处理的实际问题,该问题可能长期存在。

4、混杂绝不等于错误。混杂是大数据的常态,且应该是一种基本态和标准态。

5、大数据揭示了传统样本无法揭示的细节信息,大数据是通往“精准”处理的基本途径。

6、大数据时代,不再热衷于追求因果关系,而是试图探寻不同事物之间的关系,在此基础上找到可供观察的关联物,以进行预测。而预测,是大数据应用的核心所在。

7、相关关系被阐释之后,可进行因果关系的分析。但是必须注意到,因果关系只是相关关系的特殊形式,因果关系在大数据时代已经不是解释世界的基础;相关关系是一种较为普通的存在,在大数据时代更容易被发掘,可以更高效地指导实践,甚或随着大数据的发展,以往的因果关系可能会被证伪,或被视为相关关系。

其中第1点是大数据对于认识论的改造;第2—5点体现了大数据时代与传统时代对数据要求的迥然不同;第6和7点则是数据间逻辑关系的优先性的颠覆。从实践的角度而言,第1点可以作为前提,第2—5点可以作为数据搜集与处理的准则,第6和7点或可作为数据解释的指导方向。

二、大数据在高校智慧校园中的应用

2015年国家提出并制定了“互联网+”行动计划,将“互联网+”上升到了国家战略。“互联网+”的提出必将给高校智慧校园建设增加新的内涵、注入新的动力。借助“互联网+”推动数字校园加速向智慧校园升级,充分利用云计算、物联网、移动互联、大数据等一系列新技术、新理念、新模式,打造全新的大学智慧校园,有力支撑大学未来发展战略,带动人才培养及评价方式的创新、提升校务治理水平,提供多层次的个性化服务和智能化管理决策,大学智慧校园建设的核心内涵可以概括为“全面的环境感知、无缝的网络互通、弹性的云生态圈、海量的数据支撑、开放的学习环境、个性化师生服务、智能化管理决策、高效的校务治理”。

高校在信息化进程中,产生了各类结构化和非结构化的数据,包括教学管理数据、教学资源数据、学生信息数据等,大到高校的治校方针策略,小到学生的日常消费,数据繁多,类型复杂。利用大数据技术对这些数据进行搜集、分析,转化为高校管理与服务可利用的资源,将对智慧校园建设起到非常重要的作用。

下面举例说明大数据技术在智慧校园中的应用。

1、综合校情展示

对学校管理者而言,通过综合校情分析展示,可以对学校的在校生情况(本科生、研究生)、课程情况、科研成果情况、奖助情况、就业情况、教工情况、教师分布、干部情况、家具情况、资产情况、房屋情况、排名情况、消费情况等方面进行直观的了解和横向纵向的对比。结合历年数据变化规律可以为辅助决策提供依据。不同系统之间数据的关联性或许能够给管理者决策提供新的思路。

综合校情展示主要包括基础数据分析展示和行为数据分析展示。

基本数据分析:如招生数据分析、学生数据分析、毕业数据分析、教师数据分析、课程数据分析、成绩数据分析、就业数据分析、高校资产数据分析等。

行为数据分析:学校食堂就餐情况分析、一卡通消费行为分析、上网行为分析、图书借阅行为分析、图书馆使用时长、上网时长/流量和成绩之间的相关性分析、重点人群群体的特征刻画分析和预警等等。

举例说明:

(a)高校就业信息统计。从高校学生的毕业去向、就业单位、就业地区、就业行业、就业薪资等多维度进行统计分析,全面呈现高校就业情况,为高校就业办发现学生就业规律、有针对性的进行学生就业指导提供支撑。

(b)教学信息统计分析。为校领导呈现了高校热门课程排行、各院系开设课程统计和学生成绩统计分析、挂科率分析,全面呈现学生在校期间的学习与成绩分布,为指导高校课程开设、提高学生成绩提供支撑。

(c)一卡通统计分析。展现了高校学生整体消费能力、消费偏好,为后勤部门了解学生餐饮、购物偏好,有针对性的提升服务水平提供支撑。

(d)各生源地消费能力。按照生源地统计该地区学生的消费能力,来详细查看在某一段时间学生消费额和消费次数的统计。

(e)学校网络使用状况分析和学生上网行为统计。通过对学生上网的地址进行统计、分析,结合其基础的个人信息数据,可按不同的维度,比如性别、籍贯、院系等来统计出不同类别的人群,对于某类网站的使用频率。如果记录的日志足够详细,甚至可以统计出学生在网上消费的喜好或偏向,对于后勤或学工等部门也是一个比较重要的参考。

应用到的相关技术有:数据关联分析、多源数据整合、海量日志数据处理、benchmark、指标体系建立、AgileBI、全文检索引擎。

2、公共资源使用情况分析

对于高校而言,食堂就餐、体育场馆、教室、图书馆、校医院等各类公共资源有限,师生没有很好的途径获知这些资源的服务能力情况,导致经常发生排队、拥挤的情况,给师生学习、生活带来了不好的体验。随着学校信息化的推进,各部门管理信息系统逐步建设并投入使用;随着技术的发展,特别是物联网和智能感知设备的出现,使数字校园智能服务成为了可能。

数据来源于一卡通消费、一卡通门禁、无线网、校园安全视频监控等。

(a)食堂、澡堂人员密度状况及建议各食堂、公共澡堂各时段就餐人员密度情况,各类人员(年级、籍贯、职称等)就餐爱好、习惯等。

(b)教室使用状况、人员密度、各时间段教室使用情况、教室人数等;基于无线网络进行考勤。

(c)会议场馆、体育场馆使用状况及人员密度。为师生提供会议场馆的可用性查询,体育场馆的使用情况(有课、无课等),以及人员密度发布。

(e)图书馆座位使用状况及人员密度发布,提供图书馆座位空闲情况及图书馆内人数等。

(f)校内人员密度分布。根据学校无线网数据、安全视频监控信息,识别学校人员热力分布图。

应用到的相关技术有:数据关联分析、数据挖掘(聚类分析)、海量日志数据处理、多源数据整合(日志数据与结构化数据整合)、高速内存数据库、分布式全文检索引擎。

3、个人数据报告

面向校园师生用户提供个性化数据服务,展现师生在校园内学习、消费、生活、健康等

方面的个人行为习惯以,帮助学生从严谨的数据分析更加了解自己,以及与他人的差异,帮助校园师生感受信息化带来的人文关怀与改变。

数据来源自一卡通消费、图书馆门禁、图书借阅系统、校园网络系统、体育场馆门禁等。

(a)校园卡账单及消费习惯分析报告;

(b)图书馆进出频次、时长及借阅习惯分析报告;

(c)网络账单及上网习惯分析报告;

(d)体育健身锻炼学期报告。

通过高校官方微信号、APP进行手机推送,移动互联网时代方便用户及时阅读、分享、传播。

面向校园师生用户提供个性化数据服务,展现师生在校园内学习、消费、生活、健康等方面的个人行为习惯以,帮助学生从严谨的数据分析更加了解自己,以及与他人的差异,帮助校园师生感受信息化带来的人文关怀与改变。

应用到的相关技术有:数据关联分析、数据挖掘(用户画像)、海量日志数据处理、多源数据整合。

4、图书馆电子期刊资源使用效率分析

高校每年花费资金购买着名期刊论文集,为师生用户提供便捷的文献检索和下载服务。图书馆电子期刊资源的使用情况、不同学科对于不同电子期刊资源使用偏好的差异,是图书馆亟需了解的内容。通过对高校用户期刊文献检索记录的大数据分析,优化论文期刊购买方案,使图书馆可以采购到师生更加需要的资源(传统纸质+电子资源),提高现有采购效率。

学校通常的做法是向数据商(如万方、CNKI)购买电子期刊资源访问统计数据,而这种方式基于学校整体访问数据做统计分析,无法基于用户做访问详情的分析统计,从而无法获取到基于不同学科门类、不同学院和专业特点、不同教师等级的不同人群期刊访问情况分析,也无法了解到不同资源库的使用情况横向对比分析。对师生的检索关键词进行挖掘也是非常重要的方向,而传统的做法无法了解学校师生用户检索电子期刊资源的检索偏好、检索热门等具体信息。

出口网络日志数据记录了师生访问电子期刊资源库的行为,通过大数据技术对出口URL日志等数据进行处理及关键信息提取,关联学校内部用户信息数据,将实现图书馆电子资源使用的全面分析以及人群分析,为图书馆采购决策提供辅助。

数据来源自图书馆采购电子期刊资源列表、师生上网URL日志、师生上网身份认证等。

应用到的相关技术有:数据关联分析、海量日志数据处理、多源数据整合(日志数据与结构化数据整合)、分布式全文检索引擎。

5、校园舆情监测

在移动互联网大潮之下,无论是正面信息还是负面信息都会以更快的速度传播。学校声誉对学校招生、就业、评优评先等方面有很大影响,随着移动互联网和社交媒体的普及,高校越来越重视学校的社会评价。目前部分高校会利用互联网数据监测学校声誉,通过大数据的手段通过实时监测互联网新媒体上与学校相关的新闻、传播话题和用户反馈,了解学校舆情、声誉及影响力。

应用到的相关技术有:文本挖掘、语义分析(正负面判断)、语义相似度计算、弹性爬虫引擎、分布式全文检索引擎。

我所了解的大数据在智慧校园中的应用还包括教学信息统计分析,通过对课程知识结构进行样本分析,结合教育过程,综合学生学习成绩分布来验证课程讲授过程的合理性和工程教育认证中的达成度来综合分析课程开设的合理性。

又如,学校资产管理信息分析,借助于资产管理信息平台实现对校园基础设施、教学实验设备、校园通信网络设备等数据的采集分析,为学校基础建设方向、教学实验设备的维护、校园网通信设备的升级改造提供数据支持。

“智慧网格学生管理平台”,以高校信息技术和数字化校园建设成果为基础支撑,建设以社区网格、管理网格、教育网格三个维度的网格为载体,面向学生发展的综合管理与服务流程优化的总体框架。对学生培养全生命周期中的生活、学业、思想等发展过程进行主动辅导,形成协同可持续的智慧管理与导引发展新模式,具有学生画像、学生行为预警(在校状况、学业、消费、身心健康)、学生家庭经济状况分析、学生综合数据检索、学生群体分析等功能,能够辅助学工部门、院系管理者和辅导员开展学生安全教育管理、学生心理健康辅导、精准资助等工作,提升工作效率,促进学生管理工作创新与实践。

由于时间关系,今天就交流这么多。谢谢!



F. 为什么说数据是信息时代的“无价之宝”

因为信息时代的信息传输和交流都是依靠数据来进行的,所以只要拥有了数据,那么不管想要什么都如同探囊取物一般简单,所以显而易见,数据就是信息时代的无价之宝。


数据对信息时代的重要程度就好像血液对我们身体的重要程度一般,想要交流信息就必须是要有数据的,而没有数据的信息时代就只是一个架子,一个空壳而已。

G. 大数据时代

预测——大数据的核心

量变导致质变

要全体不要抽样、要效率不要绝对精确、要相关不要精确

万事万物数据化、数据交叉复用的巨大价值

大数据变革公共卫生——它是建立在大数据的基础上的。这是当今社会所独有的一种新型能力:以一种前所未有的方式,通过对海量信息进行分析,获得有巨大价值的产品和服务,或深刻的洞见。

大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场,组织结构,以及政府与公民关系的方法。

大数据价值链的3大构成:数据本身、技能、思维

大数据的精髓——分析信息时的三个转变

1.在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样

2.研究数据如此之多,以至于我们不再热衷于追求精确度

3.我们不再热衷于寻找因果关系

小数据时代的随机采样,最少的数据获得最多的信息

大数据时代的思维变革

1.更多:不是随机采样而是全体数据

2.更杂:不是精确性,而是混杂性

3.更好:不是因果关系而是相关关系

大数据时代的商业变革

4:数据化:一切皆可“量化”

5."取之不尽,用之不竭"的数据创新

数据的再利用

重组数据

可扩展数据

数据的折旧值

数据废气

开放数据

6.数据、技术、思维的三足鼎立

大数据时代的管理变革

7.风险:让数据主宰一切的隐忧

8.掌控:责任与自由并举的信息管理

H. 现在我们都在大数据时代,那么什么是大数据时代

最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、互联网之后又IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。

I. 什么和什么是数据收集的两大重要渠道引导了大数据时代的来临

让大数据区别于数据的,是其海量积累、高增长率和多样性

什么是数据?数据(data)在拉丁文里是“已知”的意思,在英文中的一个解释是“一组事实的集合,从中可以分析出结论”。笼统地说,凡是用某种载体记录下来的、能反映自然界和人类社会某种信息的,就可称之为数据。古人“结绳记事”,打了结的绳子就是数据。步入现代社会,信息的种类和数量越来越丰富,载体也越来越多。数字是数据,文字是数据,图像、音频、视频等都是数据。


阅读全文

与数据时代依靠什么相关的资料

热点内容
改名后身份证信息多久更新 浏览:542
程序员请老板吃什么 浏览:95
富达将在什么时候交易 浏览:777
数据运营怎么做 浏览:798
莆田移动数据包月多少钱 浏览:973
u盘里有驱动程序是干什么的 浏览:350
大数据什么时候用的 浏览:520
如何运行戴尔诊断程序 浏览:195
渤海证券的交易密码多少位 浏览:820
传媒技术哪个学校好 浏览:557
产品溢价是什么意思 浏览:618
什么方法躲过大数据 浏览:53
react的props有哪些数据 浏览:827
苹果快充数据线有什么区别 浏览:501
红枣加工有哪些技术 浏览:87
小程序怎么加流量 浏览:571
怎么提取程序代码 浏览:26
甘南咖啡技术培训哪里找 浏览:306
大学生做代理有什么现象 浏览:699
微信哪里看房产信息 浏览:217